

2

IS 2.5

Practical 3 :
LABORATORY MANUAL FOR

INFORMATION ORGANIZATION
AND RETRIEVAL

3

__
Course Design and Editorial Committee

Prof. M.|G.Krishnan Prof. Vikram Raj Urs

Vice Chancellor & Chairperson Dean (Academic) & Convener

Karnataka State Open University Karnataka State Open University

Manasagangotri, Mysore – 570 006 Manasagangotri, Mysore – 570 006

Head of the Department Course Co-Ordinator

Rashmi B.S Mr. Mahesha DM

Assistant professor & Chairperson Assistant professor in Computer Science

DoS in Information Technology DoS in Computer Science

Karnataka State Open University Karnataka State Open University

Manasagangotri, Mysore – 570 006 Manasagangotri, Mysore – 570 006

Course Editor

Ms. Nandini H.M

Assistant professor of Information Technology

DoS in Information Technology

Karnataka State Open University

Manasagangotri, Mysore – 570 006

Course Writers

Dr. B. H. Shekar

Associate Professor & Chairman

Department of Computer Science

Manasagangotri

Mangalore University

Dr. Manjaiah D H

Associate Professor

Department of Computer Science

Manasagangotri

Mangalore University

Publisher

Registrar

Karnataka State Open University

Manasagangotri, Mysore – 570 006

Developed by Academic Section, KSOU, Mysore

Karnataka State Open University, 2012

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or

any other means, without permission in writing from the Karnataka State Open University.

Further information on the Karnataka State Open University Programmes may be obtained

from the University’s Office at Manasagangotri, Mysore – 6.

Printed and Published on behalf of Karnataka State Open University, Mysore-6 by the

Registrar (Administration)

4

ALGORITHMS FOR INFORMATION ORGANIZATION AND

RETRIEVAL INTRODUCTION

1. Purpose:

 Short introduction to Information Retrieval.

 The importance of Information Retrieval Systems.

 Short presentation of most common algorithms used for Information Retrieval and

Data Mining.

2. Information Retrieval Introduction

2.1 What is Information Retrieval?

Information retrieval (IR) - finding material (usually documents) of an unstructured nature

(usually text) that satisfies an information need from within large collections (usually stored

on computers).

Information retrieval is a problem-oriented discipline, concerned with the problem of the

effective and efficient transfer of desired information between human generator and human

user

In other words:

• The indexing and retrieval of textual documents.

• Concerned firstly with retrieving relevant documents to a query.

• Concerned secondly with retrieving from large sets of documents efficiently.

2.2 Why IR? – A Simple Example.

Suppose there is a store of documents and a person (user of the store) formulates a question

(request or query) to which the answer is a set of documents satisfying the information need

expressed by his question.

Solution: User can read all the documents in the store, retain the relevant documents and

discard all the others – Perfect Retrieval… NOT POSSIBLE !!!

Alternative: Use a High Speed Computer to read entire document collection and extract the

relevant documents.

Goal = find documents relevant to an information need from a large document set.

5

2.3 Role:

Three main areas of Research:

• Content Analysis: Describing the contents of documents in a form suitable for

computer processing;

• Information Structures: Exploiting relationships between documents to improve the

efficiency and effectiveness of retrieval strategies;

• Evaluation: the measurement of the effectiveness of retrieval.

o Precision - The ability to retrieve top-ranked documents that are mostly

relevant.

o Recall - The ability of the search to find all of the relevant items in the corpus.

3. Information Retrieval Systems

A document based IR system typically consists of three main subsystems: document

representation, representation of users' requirements (queries), and the algorithms used to

match user requirements (queries) with document representations. The basic architecture is as

shown in figure 1.

A document collection consists of many documents containing information about various

subjects or topics of interests. Document contents are transformed into a document

representation (either manually or automatically). Document representations are done in a

way such that matching these with queries is easy. Another consideration in document

representation is that such a representation should correctly reflect the author's intention. The

6

primary concern in representation is how to select proper index terms. Typically

representation proceeds by extracting keywords that are considered as content identifiers and

organizing them into a given format.

Queries transform the user's information need into a form that correctly represents the user's

underlying information requirement and is suitable for the matching process. Query

formatting depends on the underlying model of retrieval used. The user rates documents

presented as either relevant or non-relevant to his/her information need. The basic problem

facing any IR system is how to retrieve only the relevant documents for the user’ s

information requirements, while not retrieving non- relevant ones.

Various system performance criteria like precision and recall have been used to gauge the

effectiveness of the system in meeting users’ information requirements.

Recall is the ratio of the number of relevant retrieved documents to the total number of

relevant documents available in the document collection. Precision is defined as the ratio of

the number of relevant retrieved documents to the total number of retrieved documents.

Relevance feedback is typically used by the system (dotted arrows in figure 1) to improve

document descriptions or queries, with the expectation that the overall performance of the

system will improve after such a feedback.

4. Areas of IR application

Information retrieval (IR) systems were originally developed to help manage the huge

scientific literature that has developed since the 1940s. Many university, corporate, and

public libraries now use IR systems to provide access to books, journals, and other

documents. Commercial IR systems offer databases containing millions of documents in

myriad subject areas. Dictionary and encyclopaedia databases are now widely available for

PCs. IR has been found useful in such disparate areas as office automation and software

engineering. Indeed, any discipline that relies on documents to do its work could potentially

use and benefit from IR. Information retrieval is used today in many applications. Is used to

search for documents, content thereof, document metadata within traditional relational

databases or internet documents more conveniently and decrease work to access information.

Retrieved documents should be relevant to a user’s information need. Obvious examples

include search engines as Google, Yahoo or Microsoft Live Search. Many problems in

information retrieval can be viewed as a prediction problem, i.e. to predict ranking scores or

ratings of web pages, documents, music songs etc. and learning the information desires and

interests of users.

7

4.1 General applications of information retrieval:

4.1.1 Digital Library

A digital library is a library in which collections are stored in digital formats (as opposed to

print, microform, or other media) and accessible by computers. The digital content may be

stored locally, or accessed remotely via computer networks. A digital library is a type of

information retrieval system.

Many academic libraries are actively involved in building institutional repositories of the

institution's books, papers, theses, and other works which can be digitized or were 'born

digital'.

Many of these repositories are made available to the general public with few restrictions, in

accordance with the goals of open access, in contrast to the publication of research in

commercial journals, where the publishers often limit access rights. Institutional, truly free,

and corporate repositories are sometimes referred to as digital libraries.

4.1.2 Recommender systems

Recommender systems or recommendation engines form or work from a specific type of

information filtering system technique that attempts to recommend information items (films,

television, video on demand, music, books, news, images, web pages, etc) that are likely to be

of interest to the user. Typically, a recommender system compares a user profile to some

reference characteristics, and seeks to predict the 'rating' that a user would give to an item

they had not yet considered. These characteristics may be from the information item (the

content-based approach) or the user's social environment (the collaborative filtering

approach). Collaborative filtering is concerned with making recommendation about

information items (movies, music, books, news, web pages) to users. Based on the “Word of

Mouth” phenomenon, it recommends items that like-minded people liked in the past.

Although collaborative filtering is an effective way to alleviate information overload and has

been widely adopted in e-commerce websites, collecting user preference data is not trivial

because it may raise serious concerns about the privacy of individuals.

4.1.3 Search Engines

A search engine is one of the most the practical applications of information retrieval

techniques to large scale text collections. Web search engines are best known examples, but

many others searches exist, like: Desktop search, Enterprise search, Federated search, Mobile

search, and Social search.

8

A web search engine is designed to search for information on the World Wide Web. The

search results are usually presented in a list of results and are commonly called hits. The

information may consist of web pages, images, information and other types of files. Some

search engines also mine data available in databases or open directories. Unlike Web

directories, which are maintained by human editors, search engines operate algorithmically or

are a mixture of algorithmic and human input.

Relevance feedback is an important issue of information retrieval found in web searching.

Reliability of information is a pre-requisite to get most from research information found onto

the web. A frequently encountered issue is that search terms are ambiguous and thus

documents from a different non-relevant context are retrieved or you may not know which

terms describe your problem properly, especially if you are a non-expert user in this

particular domain.

The novel idea of relevance feedback allows users to rate retrieved documents as relevant or

less relevant and thus help other users to find documents more quickly. These ideas where

adopted from image retrieval. Images are hard to describe using words.

4.1.4 Media search

An image retrieval system is a computer system for browsing, searching and retrieving

images from a large database of digital images. Most traditional and common methods of

image retrieval utilize some method of adding metadata such as captioning, keywords, or

descriptions to the images so that retrieval can be performed over the annotation words.

Manual image annotation is time-consuming, laborious and expensive; to address this, there

has been a large amount of research done on automatic image annotation. Additionally, the

increase in social web applications and the semantic web have inspired the development of

several web-based image annotation tools.

5. IR Algorithms

It is hard to classify IR algorithms, and to draw a line between each type of application.

However, we can identify three main types of algorithms, which are described below. There

are other algorithms used in IR that do not fall within our description, for example, user

interface algorithms. The reason that they cannot be considered as IR algorithms is because

they are inherent to any computer application. We distinguish three main classes of

algorithms. These are retrieval, indexing, and filtering algorithms.

9

5.1 Retrieval Algorithms

The main class of algorithms in IR is retrieval algorithms, that is, to extract information from

a textual database. We can distinguish two types of retrieval algorithms, according to how

much extra memory we need:

 Sequential scanning of the text: extra memory is in the worst case a function of the

query size, and not of the database size. On the other hand, the running time is at least

proportional to the size of the text, for example, string searching.

 Indexed text: an "index" of the text is available, and can be used to speed up the

search. The index size is usually proportional to the database size, and the search time

is sub-linear on the size of the text, for example, inverted files and signature files.

Formally, we can describe a generic searching problem as follows: Given a string t (the text),

a regular expression q (the query), and information (optionally) obtained by pre-processing

the pattern and/or the text, the problem consists of finding whether t ϵΣ*q (q for short) and

obtaining some or all of the following information:

1. The location where an occurrence (or specifically the first, the longest, etc.) of q

exists. Formally, if t ϵΣ*q find a position m >=0 such that t ϵ Σ (from 0 to m)q*. For

example, the first occurrence is defined as the least m that fulfills this condition.

2. The number of occurrences of the pattern in the text. Formally, the number of all

possible values of m in the previous category.

3. All the locations where the pattern occurs (the set of all possible values of m).

In general, the complexities of these problems are different.

The efficiency of retrieval algorithms is very important, because we expect them to solve on-

line queries with a short answer time. This need has triggered the implementation of retrieval

algorithms in many different ways: by hardware, by parallel machines, and so on.

5.2 Filtering Algorithms

This class of algorithms is such that the text is the input and a processed or filtered version of

the text is the output. This is a typical transformation in IR, for example to reduce the size of

a text, and/or standardize it to simplify searching.

The most common filtering/processing operations are:

• Common words removed using a list of stop words;

• Uppercase letters transformed to lowercase letters;

• Special symbols removed and sequences of multiple spaces reduced to one space;

• Numbers and dates transformed to a standard format;

• Word stemming (removing suffixes and/or prefixes);

10

• Automatic keyword extraction;

• Word ranking.

Unfortunately, these filtering operations may also have some disadvantages. Any query,

before consulting the database, must be filtered as is the text; and, it is not possible to search

for common words, special symbols, or uppercase letters, nor to distinguish text fragments

that have been mapped to the same internal form.

5.3 Indexing Algorithms

The usual meaning of indexing is to build a data structure that will allow quick searching of

the text, as we mentioned previously. There are many classes of indices, based on different

retrieval approaches. For example, we have inverted files, signature files, tries, and so on.

Almost all types of indices are based on some kind of tree or hashing. Perhaps the main

exceptions are clustered data structures (this kind of indexing is called clustering), which is

covered in further laboratories, and the Direct Acyclic Word Graph (DAWG) of the text,

which represents all possible sub-words of the text using a linear amount of space and is

based on finite automata theory.

Usually, before indexing, the text is filtered. Figure 2 shows the complete process for the text.

Figure 2: Text pre-processing

The pre-processing time needed to build the index is amortized by using it in searches. For

example, if building the index requires O (n log n) time, we would expect to query the

database at least O(n) times to amortize the pre-processing cost. In that case, we add O(log n)

pre-processing time to the total query time (that may also be logarithmic).

6. Data Mining

6.1 Introduction

A topic related to Information Retrieval is Data Mining.

Data mining is the process of extracting patterns from data. Data mining is becoming an

increasingly important tool to transform this data into information. It is commonly used in a

11

wide range of profiling practices, such as marketing, surveillance, fraud detection and

scientific discovery.

Data mining can be used to uncover patterns in data but is often carried out only on samples

of data. The mining process will be ineffective if the samples are not a good representation of

the larger body of data. Data mining cannot discover patterns that may be present in the

larger body of data if those patterns are not present in the sample being "mined".

Inability to find patterns may become a cause for some disputes between customers and

service providers. Therefore data mining is not foolproof but may be useful if sufficiently

representative data samples are collected. The discovery of a particular pattern in a particular

set of data does not necessarily mean that a pattern is found elsewhere in the larger data from

which that sample was drawn. An important part of the process is the verification and

validation of patterns on other samples of data.

Data mining commonly involves the following classes of tasks:

• Classification - Arranges the data into predefined groups. For example, an email

program might attempt to classify an email as legitimate or spam. Common

algorithms include decision tree learning, nearest neighbour, naive Bayesian

classification and neural networks.

• Clustering - Is like classification but the groups are not predefined, so the algorithm

will try to group similar items together.

• Regression - Attempts to find a function which models the data with the least error.

6.2 Regression

Regression is the oldest and most well-known statistical technique that the data mining

community utilizes. Basically, regression takes a numerical dataset and develops a

mathematical formula that fits the data. When you're ready to use the results to predict future

behaviour, you simply take your new data, plug it into the developed formula and you've got

a prediction! The major limitation of this technique is that it only works well with continuous

quantitative data (like weight, speed or age). If you're working with categorical data where

order is not significant (like colour, name or gender) you're better off choosing another

technique.

6.2.1 Regression algorithms:

• Linear regression involves finding the “best” line to fit two attributes (or variables), so

that one attribute can be used to predict the other.

12

• Multiple linear regression is an extension of linear regression, where more than two

attributes are involved and the data are fit to a multidimensional surface.

6.3 Classification

Classification is one of the major data mining tasks. Although this task is accomplished by

generating a predictive model of data, interpreting the model frequently provides information

for discriminating labelled classes in data

6.3.1 Classification Algorithms

Brief overview of basic classification algorithms

The goal of classification is to build a set of models that can correctly predict the class of the

different objects. The input to these methods is a set of objects (i.e., training data), the classes

which these objects belong to (i.e., dependent variables), and a set of variables describing

different characteristics of the objects (i.e., independent variables). Once such a predictive

model is built, it can be used to predict the class of the objects for which class information is

not known a priori. The key advantage of supervised learning methods over unsupervised

methods (for example, clustering) is that by having an explicit knowledge of the classes the

different objects belong to, these algorithms can perform an effective feature selection if that

leads to better prediction accuracy.

The followings are brief overview on some classification algorithms that has been used in

data mining and machine learning area and used as base algorithms in this course.

6.3.1.1 k-Nearest Neighbour (KNN) Algorithm

KNN classifier is an instance-based learning algorithm that is based on a distance function for

pairs of observations, such as the Euclidean distance or Cosine. In this classification

paradigm, k nearest neighbours of a training data are computed first. Then the similarities of

one sample from testing data to the k nearest neighbours are aggregated according to the class

of the neighbors, and the testing sample is assigned to the most similar class. One of

advantages of KNN is that it is well suited for multi-modal classes as its classification

decision is based on a small neighborhood of similar objects (i.e., the major class). So, even if

the target class is multimodal (i.e., consists of objects whose independent variables have

different characteristics for different subsets), it can still lead to good accuracy. A major

drawback of the similarity measure used in KNN is that it uses all features equally in

13

computing similarities. This can lead to poor similarity measures and classification errors,

when only a small subset of the features is useful for classification.

6.3.1.2 Naive Bayesian (NB) Algorithm

NB algorithm has been widely used for document classification, and shown to produce very

good performance. The basic idea is to use the joint probabilities of words and categories to

estimate the probabilities of categories given a document. NB algorithm computes the

posterior probability that the document belongs to different classes and assigns it to the class

with the highest posterior probability. The posterior probability of class is computed using

Bayes rule and the testing sample is assigned to the class with the highest posterior

probability. The naive part of NB algorithm is the assumption of word independence that the

conditional probability of a word given a category is assumed to be independent from the

conditional probabilities of other words given that category. There are two versions of NB

algorithm. One is the multi-variate Bernoulli event model that only takes into account the

presence or absence of a particular term, so it doesn't capture the number of occurrence of

each word. The other model is the multinomial model that captures the word frequency

information in documents.

6.3.1.3 Concept Vector-based (CB) Algorithm

In CB classification algorithm, the length of each vector is normalized so that it is of unit

length. The idea behind the concept-based classification is extremely simple. For each set of

documents belonging to the same class, we compute its concept vector by summing up all

vectors in the class and normalize it by its 2-norm. If there are c classes in the training data

set, this leads to c concept vectors, where each concept vector for each class. The class of a

new sample is determined as follow. First, for a given testing document, which was already

normalized by 2-norm so that it has unit length, we compute cosine similarity between this

given testing document to all k concept vectors. Then, based on these similarities, we assign a

class label so that it corresponds to the most similar concept vector's label. One of the

advantages of the CB classification algorithm is that it summarizes the characteristics of each

class, in the form of concept vector. So, the advantage of the summarization performed by the

concept vectors is that it combines multiple prevalent features together, even if these features

are not simultaneously present in a single document. That is, if we look at the prominent

dimensions of the concept vector (i.e., highest weight terms), these will correspond to words

that appear frequently in the class, but not necessarily all in the same set of documents. This

14

is particularly important for high dimensional and sparse data sets for which the coverage of

any individual feature is often quite low.

6.3.1.4 Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labelled training tuples. A

decision tree is a flowchart-like tree structure, where each internal node (non leaf node)

denotes a test on an attribute, each branch represents an outcome of the test, and each leaf

node (or terminal node) holds a class label. The top most node in a tree is the root node.

 “How are decision trees used for classification?” Given a tuple, X, for which the associated

class label is unknown, the attribute values of the tuple are tested against the decision tree. A

path is traced from the root to a leaf node, which holds the class prediction for that tuple.

Decision trees can easily be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers

does not require any domain knowledge or parameter setting, and therefore is appropriate for

exploratory knowledge discovery. Decision trees can handle high dimensional data. Their

representation of acquired knowledge in tree form is intuitive and generally easy to assimilate

by humans. The learning and classification steps of decision tree induction are simple and

fast. In general, decision tree classifiers have good accuracy. However, successful use may

depend on the data at hand. Decision tree induction algorithms have been used for

classification in many application areas, such as medicine, manufacturing and production,

financial analysis, astronomy, and molecular biology.

15

6.4 Clustering

Clustering can be considered the most important unsupervised learning problem; so, as every

other problem of this kind, it deals with finding a structure in a collection of unlabeled data.

A loose definition of clustering could be “the process of organizing objects into groups whose

members are similar in some way”. A cluster is therefore a collection of objects which are

“similar” between them and are “dissimilar” to the objects belonging to other clusters. We

can show this with a simple graphical example:

6.4.1 K-means clustering:

The aim of K-means (or clustering) is: We want to group the items into k clusters such that

all items in same cluster are as similar to each other as possible. And items not in same

cluster are as different as possible. We use the distance measures to calculate similarity and

dissimilarity. One of the important concept in K-means is that of centroid. Each cluster has a

centroid. You can consider it as the point that is most representative of the cluster.

Equivalently, centroid is point that is the "center" of a cluster.

Algorithm:

1. Randomly choose k items and make them as initial centroids.

2. For each point, find the nearest centroid and assign the point to the cluster associated

with the nearest centroid.

3. Update the centroid of each cluster based on the items in that cluster. Typically, the

new centroid will be the average of all points in the cluster.

4. Repeats steps 2 and 3, till no point switches clusters.

16

5. As you can see, the algorithm is extremely simple. After some iterations, we will get

k-clusters within which each points are similar.

6.4.2 Hierarchical Clustering Algorithms

Given a set of N items to be clustered, and an N*N distance (or similarity) matrix, the basic

process of hierarchical clustering (defined by S.C. Johnson in 1967) is this:

1. Start by assigning each item to a cluster, so that if you have N items, you now have N

clusters, each containing just one item. Let the distances (similarities) between the

clusters the same as the distances (similarities) between the items they contain.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so

that now you have one cluster less.

3. Compute distances (similarities) between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. (*)

References:

[1] Information Retrieval Data Structures & Algorithms - William B. Frakes and Ricardo Baeza-

Yates

[2] Introduction to Information Retrieval – Christopher D. Manning, Prabhakar Raghavan,

Hinrich Schutze

[3] Data Mining: Concepts and Techniques - Jiawei Han & Micheline Kamber

17

 DESCRIPTION OF WEKA

-A JAVA-IMPLEMENTED MACHINE LEARNING TOOL

Purpose:

- Install and run WEKA

- Experiment environment in GUI version and in command line version

1. Theoretical Aspects

1.1. What is WEKA?

WEKA is a collection of machine learning algorithms for data mining tasks. The algorithms can either

be applied directly to a dataset or called from your own Java code. WEKA contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization. It is also well-

suited for developing new machine learning schemes. WEKA is used for research, education, and

applications. The tool gathers a comprehensive set of data pre-processing tools, learning algorithms

and evaluation methods, graphical user interfaces (incl. data visualization) and environment for

comparing learning algorithms.

WEKA is open source software issued under the GNU General Public License. "WEKA" stands for

the Waikato Environment for Knowledge Analysis, which was developed at the University of

Waikato in New Zealand. WEKA is extensible and has become a collection of machine learning

algorithms for solving real-world data mining problems. It is written in Java and runs on almost every

platform.

WEKA is easy to use and to be applied at several different levels. You can access the WEKA class

library from your own Java program, and implement new machine learning algorithms. There are

three major implemented schemes in WEKA. (1) Implemented schemes for classification. (2)

Implemented schemes for numeric prediction. (3) Implemented "meta-schemes”. Besides actual

learning schemes, WEKA also contains a large variety of tools that can be used for pre-processing

datasets, so that you can focus on your algorithm without considering too much details as reading the

data from files, implementing filtering algorithm and providing code to evaluate the results.

Some practical applications that use WEKA:

Acronym identification

This addresses the task of finding acronym-definition pairs in text. Most of the previous work on the

topic is about systems that involve manually generated rules or regular expressions. In this manual,

we present a supervised learning approach to the acronym identification task. Our approach reduces

the search space of the supervised learning system by putting some weak constraints on the kinds of

acronym-definition pairs that can be identified. We obtain results comparable to hand-crafted systems

18

that use stronger constraints. We describe our method for reducing the search space, the features used

by our supervised learning system, and our experiments with various learning schemes.

Gene selection from microarray data for cancer classification

A DNA microarray can track the expression levels of thousands of genes simultaneously. Previous

research has demonstrated that this technology can be useful in the classification of cancers. Cancer

microarray data normally contains a small number of samples which have a large number of gene

expression levels as features. To select relevant genes involved in different types of cancer remains a

challenge. In order to extract useful gene information from cancer microarray data and reduce

dimensionality, feature selection algorithms were systematically investigated in this study.

Using a correlation-based feature selector combined with machine learning algorithms such as

decision trees, nave Bayes and support vector machines, we show that classification performance at

least as good as published results can be obtained on acute leukemia and diffuse large B-cell

lymphoma microarray data sets. We also demonstrate that a combined use of different classification

and feature selection approaches makes it possible to select relevant genes with high confidence. This

is also the first paper which discusses both computational and biological evidence for the involvement

of zyxin in leukaemogenesis.

Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure−Property

Relationship Studies of Metal Complexation with Ionophores

A benchmark of several popular methods, Associative Neural Networks (ANN), Support Vector

Machines (SVM), k Nearest Neighbors (kNN), Maximal Margin Linear Programming (MMLP),

Radial Basis Function Neural Network (RBFNN), and Multiple Linear Regression (MLR), is reported

for quantitative−structure property relationships (QSPR) of stability constants logK1 for the 1:1 (M:L)

and log_2 for 1:2 complexes of metal cations Ag+ and Eu3+ with diverse sets of organic molecules in

water at 298 K and ionic strength 0.1 M. The methods were tested on three types of descriptors:

molecular descriptors including E-state values, counts of atoms determined for E-state atom types,

and substructural molecular fragments (SMF).

1.2. Installing and running WEKA

1.2.1. In lab (this assumes WEKA is already installed)

1.2.2. On your home computer

For installing WEKA on your home computer you must check the following:

There are two stable versions of WEKA. Either you can download the self-extraction executable

version that includes the Java Virtual Machine 1.4 (WEKA-3-4jre.exe; 19,543,851bytes),

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4jre.exe or the self-extracting executable

without Java VM (WEKA-3-4.exe; 6,467,165 bytes).

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4.exe

19

This version comes with the GUI, which provides the user with more flexibility than the command

line.

After extracting the files, you will need to set your classpath variable to a complete path to WEKA.jar

(suppose you extracted WEKA to C:\WEKA, then set your classpath variable to

C:\WEKA\WEKA.jar, ie add "C:\WEKA\WEKA.jar;" to the list of values that environment variable

Path can take when working in Windows)

If you don't have administrator privileges, you can still install WEKA. For that, download the jar

archive (WEKA-3-4.jar; 6,322,417 bytes).

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4.jar

Make sure that the Java J2SE 1.4 (download from SUN) is installed on your system (which includes

the jar utility). Then open a command line console, change into the directory containing WEKA-3-

4.jar, and enter

jar -xvf WEKA-3-4.jar

This will create a new directory called WEKA-3-4. To un-jar (install) the source code, position

yourself in the recently created WEKA-3-4 directory and type

jar -xvf WEKA-src.jar

Which will create a new directory WEKA containing the source code. Since WEKA is open source

software issued under the GNU General Public License, you can use and modify the source code as

you like.

NOTE: It seems that Windows will not set up your CLASSPATH properly if any of the WEKA

directories contains spaces. Therefore, installing WEKA in the Program Files folder is not a good

idea.

1.3. Online documentation and further help

From your WEKA-3-4 directory, you will find:

 A jarfile containing the classes only

 A jarfile containing the complete source code

 The tutorial for the experiment environment in the GUI version of WEKA (written by David

Scuse), and the README file

 The API documentation

 Some example datasets

The most detailed and up-to-date information could be found in the online documentation on WEKA

Web Site. This page has a lot of documentation and guides on installation/usage pages.

http://www.cs.waikato.ac.nz/~ml/WEKA/index_documentation.html

20

1.4. Launching WEKA

The WEKA GUI Chooser (class WEKA.gui.GUIChooser) provides a starting point for launching

WEKA’s main GUI applications and supporting tools. If one prefers a MDI (“multiple document

interface”) appearance, then this is provided by an alternative launcher called “Main” (class

WEKA.gui.Main).

The GUI Chooser consists of four buttons—one for each of the four major WEKA applications—and

four menus.

The buttons can be used to start the following applications:

• Explorer An environment for exploring data with WEKA (the rest of this documentation

deals with this application in more detail).

• Experimenter An environment for performing experiments and conducting statistical tests

between learning schemes.

• KnowledgeFlow This environment supports essentially the same functions as the Explorer

but with a drag-and-drop interface. One advantage is that it supports incremental learning.

• SimpleCLI Provides a simple command-line interface that allows direct execution of WEKA

commands for operating systems that do not provide their own command line interface.

The menu consists of four sections:

1. Program

• LogWindow Opens a log window that captures all that is printed to stdout or stderr.

Useful for environments like MS Windows, where WEKA is normally not started from a

terminal.

• Exit Closes WEKA.

2. Tools - Other useful applications.

• ArffViewer An MDI application for viewing ARFF files in spread-sheet format.

• SqlViewer Represents an SQL worksheet, for querying databases via JDBC.

• Bayes net editor An application for editing, visualizing and learning Bayes nets.

3. Visualization - Ways of visualizing data with WEKA.

• Plot For plotting a 2D plot of a dataset.

• ROC Displays a previously saved ROC curve.

• TreeVisualizer For displaying directed graphs, e.g., a decision tree.

• GraphVisualizer Visualizes XML BIF or DOT format graphs, e.g., for Bayesian

networks.

• BoundaryVisualizer Allows the visualization of classifier decision boundaries in two

dimensions.

4. Help - Online resources for WEKA can be found here.

• WEKA homepage Opens a browser window with WEKA’s home page.

21

• HOWTOs, code snippets, etc. The general WEKAWiki [2], containing lots of examples

and HOWTOs around the development and use of WEKA.

• WEKA on Sourceforge WEKA’s project homepage on Sourceforge.net.

• SystemInfo Lists some internals about the Java/WEKA environment, e.g., the

CLASSPATH.

1.5. Simple CLI

The Simple CLI provides full access to all WEKA classes, i.e., classifiers, filters, clusters, etc., but

without the hassle of the CLASSPATH (it facilitates the one, with which WEKA was started). It

offers a simple WEKA shell with separated command line and output.

1.5.1. Commands

The following commands are available in the Simple CLI:

• java <classname> [<args>] invokes a java class with the given arguments (if any)

• break stops the current thread, e.g., a running classifier, in a friendly manner

• kill stops the current thread in an unfriendly fashion

• cls clears the output area

• exit exits the Simple CLI

• help [<command>] provides an overview of the available commands if without a

command name as argument, otherwise more help on the specified command

1.5.2. Invocation

In order to invoke a WEKA class, one has only to prefix the class with ”java”. This command tells the

Simple CLI to load a class and execute it with any given parameters. E.g., the J48 classifier can be

invoked on the iris dataset with the following command:

java WEKA.classifiers.trees.J48 -t c:/temp/iris.arff

1.5.3. Command Redirection

Starting with this version of WEKA one can perform a basic redirection:

java WEKA.classifiers.trees.J48 -t test.arff > j48.txt

Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection,

but part of another parameter.

1.5.4. Command completion

Commands starting with java support completion for classnames and filenames via Tab

(Alt+BackSpace deletes parts of the command again). In case that there are several matches, WEKA

lists all possible matches.

• package name completion

22

- java WEKA.cl<Tab>

- results in the following output of possible matches of package names:

- Possible matches:

- WEKA.classifiers

- WEKA.clusterers

• classname completion

- java WEKA.classifiers.meta.A<Tab>

- lists the following classes

- Possible matches:

- WEKA.classifiers.meta.AdaBoostM1

- WEKA.classifiers.meta.AdditiveRegression

- WEKA.classifiers.meta.AttributeSelectedClassifier

• filename completion

- In order for WEKA to determine whether a the string under the cursor

- is a classname or a filename, filenames need to be absolute (Unix/Linx:

- /some/path/file;Windows: C:\Some\Path\file) or relative and starting

- with a dot (Unix/Linux: ./some/other/path/file;Windows: .\Some\Other\Path\file).

1.5.5. The WEKA Explorer

1.5.5.1. Section Tabs

At the very top of the window, just below the title bar, is a row of tabs. When the Explorer is first

started only the first tab is active; the others are greyed out. This is because it is necessary to open

(and potentially pre-process) a data set before starting to explore the data.

The tabs are as follows:

1. Preprocess. Choose and modify the data being acted on.

2. Classify. Train and test learning schemes that classify or perform regression.

3. Cluster. Learn clusters for the data.

4. Associate. Learn association rules for the data.

5. Select attributes. Select the most relevant attributes in the data.

6. Visualize. View an interactive 2D plot of the data.

Once the tabs are active, clicking on them flicks between different screens, on which the respective

actions can be performed. The bottom area of the window (including the status box, the log button,

and the WEKA bird) stays visible regardless of which section you are in.

23

1.5.5.2. Preprocessing

1.5.5.2.1. Opening Files

The first three buttons at the top of the preprocess section enable you to load data into WEKA:

o Open file.... Brings up a dialog box allowing you to browse for the data file on the local

filesystem.

o Open URL.... Asks for a Uniform Resource Locator address for where the data is stored.

o Open DB.... Reads data from a database.

1.5.5.2.2. The Current Relation

Once some data has been loaded, the Preprocess panel shows a variety of information. The Current

relation box (the “current relation” is the currently loaded data, which can be interpreted as a single

relational table in database terminology) has three entries:

o Relation. The name of the relation, as given in the file it was loaded from. Filters

(described below) modify the name of a relation.

o Instances. The number of instances (data points/records) in the data.

o Attributes. The number of attributes (features) in the data.

1.5.5.2.3. Working with Attributes

Below the Current relation box is a box titled Attributes. There are three buttons, and beneath them is

a list of the attributes in the current relation. The list has three columns:

o No.. A number that identifies the attribute in the order they are specified in the data file.

- Selection tick boxes. These allow you select which attributes are present in the relation.

- Name. The name of the attribute, as it was declared in the data file. When you click on

different rows in the list of attributes, the fields change in the box to the right titled

Selected attribute. This box displays the characteristics of the currently highlighted

attribute in the list:

1. Name. The name of the attribute, the same as that given in the attribute list.

2. Type. The type of attribute, most commonly Nominal or Numeric.

3. Missing. The number (and percentage) of instances in the data for which this attribute is

missing (unspecified).

4. Distinct. The number of different values that the data contains for this attribute.

5. Unique. The number (and percentage) of instances in the data having a value for this attribute

that no other instances have.

Below these statistics is a list showing more information about the values stored in this attribute,

which differ depending on its type. If the attribute is nominal, the list consists of each possible value

for the attribute along with the number of instances that have that value. If the attribute is numeric, the

list gives four statistics describing the distribution of values in the data - the minimum, maximum,

24

mean and standard deviation. And below these statistics there is a colored histogram, color-coded

according to the attribute chosen as the Class using the box above the histogram. (This box will bring

up a drop-down list of available selections when clicked.) Note that only nominal Class attributes will

result in a color-coding. Finally, after pressing the Visualize All button, histograms for all the

attributes in the data are shown in a separate witting.

Returning to the attribute list, to begin with all the tick boxes are unticked. They can be toggled

on/off by clicking on them individually. The three buttons above can also be used to change the

selection:

1. All. All boxes are ticked.

2. None. All boxes are cleared (unticked).

3. Invert. Boxes that are ticked become unticked and vice versa.

Once the desired attributes have been selected, they can be removed by clicking the Remove button

below the list of attributes. Note that this can be undone by clicking the Undo button, which is located

next to the Edit button in the top-right corner of the Preprocess panel.

1.5.5.2.4. Working With Filters

The preprocess section allows filters to be defined that transform the data in various ways. The Filter

box is used to set up the filters that are required. At the left of the Filter box is a Choose button. By

clicking this button it is possible to select one of the filters in WEKA. Once a filter has been selected,

its name and options are shown in the field next to the Choose button. Clicking on this box brings up

a GenericObjectEditor dialog box.

The GenericObjectEditor dialog box lets you configure a filter. The same kind of dialog box is used

to configure other objects, such as classifiers and clusters (see below). The fields in the window

reflect the available options.

Clicking on any of these gives an opportunity to alter the filters settings. For example, the setting

may take a text string, in which case you type the string into the text field provided. Or it may give a

drop-down box listing several states to choose from. Or it may do something else, depending on the

information required. Information on the options is provided in a tool tip if you let the mouse pointer

over of the corresponding field. More information on the filter and its options can be obtained by

clicking on the More button in the About panel at the top of the GenericObjectEditor window. Some

objects display a brief description of what they do in an About box, along with a More button.

Clicking on the More button brings up a window describing what the different options do.

At the bottom of the GenericObjectEditor dialog are four buttons. The first two, Open... and Save...

allow object configurations to be stored for future use. The Cancel button backs out without

remembering any changes that have been made. Once you are happy with the object and settings you

have chosen, click OK to return to the main Explorer window.

25

Applying Filters

Once you have selected and configured a filter, you can apply it to the data by pressing the Apply

button at the right end of the Filter panel in the Preprocess panel. The Preprocess panel will then

show the transformed data. The change can be undone by pressing the Undo button. You can also use

the Edit... button to modify your data manually in a dataset editor. Finally, the Save... button at the

top right of the Preprocess panel saves the current version of the relation in the same formats

available for loading data, allowing it to be kept for future use.

Note: Some of the filters behave differently depending on whether a class attribute has been set or not

(using the box above the histogram, which will bring up a drop-down list of possible selections when

clicked). In particular, the “supervised filters” require a class attribute to be set, and some of the

“unsupervised attribute filters” will skip the class attribute if one is set. Note that it is also possible to

set Class to None, in which case no class is set.

1.5.5.3. Classification

1.5.5.3.1. Selecting a Classifier

At the top of the classify section is the Classifier box. This box has a text field that gives the name of

the currently selected classifier, and its options. Clicking on the text box brings up a

GenericObjectEditor dialog box, just the same as for filters that you can use to configure the options

of the current classifier. The Choose button allows you to choose one of the classifiers that are

available in WEKA.

1.5.5.3.2. Test Options

The result of applying the chosen classifier will be tested according to the options that are set by

clicking in the Test options box. There are four test modes:

1. Use training set. The classifier is evaluated on how well it predicts the class of the instances

it was trained on.

2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of

instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to

choose the file to test on.

3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds

that are entered in the Folds text field.

4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of

the data which is held out for testing. The amount of data held out depends on the value

entered in the % field.

26

1.5.5.3.3. The Class Attribute

The classifiers in WEKA are designed to be trained to predict a single ‘class’ attribute, which is the

target for prediction. Some classifiers can only learn nominal classes; others can only learn numeric

classes (regression problems); still others can learn both. By default, the class is taken to be the last

attribute in the data. If you want to train a classifier to predict a different attribute, click on the box

below the Test options box to bring up a drop-down list of attributes to choose from.

1.5.5.3.4. Training a Classifier

Once the classifier, test options and class have all been set, the learning process is started by clicking

on the Start button. While the classifier is busy being trained, the little bird moves around. You can

stop the training process at any time by clicking on the Stop button. When training is complete,

several things happen. The Classifier output area to the right of the display is filled with text

describing the results of training and testing. A new entry appears in the Result list box. We look at

the result list below; but first we investigate the text that has been output.

1.5.5.3.5. The Classifier Output Text

The text in the Classifier output area has scroll bars allowing you to browse the results. Of course, you

can also resize the Explorer window to get a larger display area. The output is split into several

sections:

1. Run information. A list of information giving the learning scheme options, relation name,

instances, attributes and test mode that were involved in the process.

2. Classifier model (full training set). A textual representation of the classification model that was

produced on the full training data.

3. The results of the chosen test mode are broken down thus:

4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the true

class of the instances under the chosen test mode.

5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier’s prediction

accuracy.

6. Confusion Matrix. Shows how many instances have been assigned to each class. Elements show

the number of test examples whose actual class is the row and whose predicted class is the column.

1.5.5.3.6. The Result List

After training several classifiers, the result list will contain several entries. Left-clicking the entries

flicks back and forth between the various results that have been generated. Right-clicking an entry

invokes a menu containing these items:

1. View in main window. Shows the output in the main window (just like left-clicking the entry).

2. View in separate window. Opens a new independent window for viewing the results.

27

3. Save result buffer. Brings up a dialog allowing you to save a text file containing the textual output.

4. Load model. Loads a pre-trained model object from a binary file.

5. Save model. Saves a model object to a binary file. Objects are saved in Java ‘serialized object’

form.

6. Re-evaluate model on current test set. Takes the model that has been built and tests its

performance on the data set that has been specified with the Set.. button under the Supplied test set

option.

7. Visualize classifier errors. Brings up a visualization window that plots the results of classification.

Correctly classified instances are represented by crosses, whereas incorrectly classified ones show up

as squares.

8. Visualize tree or Visualize graph. Brings up a graphical representation of the structure of the

classifier model, if possible (i.e. for decision trees or Bayesian networks). The graph visualization

option only appears if a Bayesian network classifier has been built. In the tree visualizer, you can

bring up a menu by right-clicking a blank area, pan around by dragging the mouse, and see the

training instances at each node by clicking on it. CTRL-clicking zooms the view out, while SHIFT-

dragging a box zooms the view in. The graph visualizer should be self-explanatory.

9. Visualize margin curve. Generates a plot illustrating the prediction margin. The margin is defined

as the difference between the probability predicted for the actual class and the highest probability

predicted for the other classes. For example, boosting algorithms may achieve better performance on

test data by increasing the margins on the training data.

10. Visualize threshold curve. Generates a plot illustrating the tradeoffs in prediction that are

obtained by varying the threshold value between classes. For example, with the default threshold

value of 0.5, the predicted probability of ‘positive’ must be greater than 0.5 for the instance to be

predicted as ‘positive’. The plot can be used to visualize the precision/recall tradeoff, for ROC curve

analysis (true positive rate vs false positive rate), and for other types of curves.

11. Visualize cost curve. Generates a plot that gives an explicit representation of the expected cost, as

described by Drummond and Holte (2000). Options are greyed out if they do not apply to the specific

set of results.

1.5.5.4. Clustering

1.5.5.4.1. Selecting a Clusterer

By now you will be familiar with the process of selecting and configuring objects. Clicking on the

clustering scheme listed in the Clusterer box at the top of the window brings up a

GenericObjectEditor dialog with which to choose a new clustering scheme.

28

1.5.5.4.2. Cluster Modes

The Cluster mode box is used to choose what to cluster and how to evaluate the results. The first

three options are the same as for classification: Use training set, Supplied test set and Percentage

split — the data is assigned to clusters instead of trying to predict a specific class. The fourth mode,

Classes to clusters evaluation, compares how well the chosen clusters match up with a pre-assigned

class in the data. The drop-down box below this option selects the class, just as in the Classify panel.

An additional option in the Cluster mode box, the Store clusters for visualization tick box,

determines whether or not it will be possible to visualize the clusters once training is complete. When

dealing with datasets that are so large that memory becomes a problem it may be helpful to disable

this option.

1.5.5.4.3. Ignoring Attributes

Often, some attributes in the data should be ignored when clustering. The Ignore attributes button

brings up a small window that allows you to select which attributes are ignored. Clicking on an

attribute in the window highlights it, holding down the SHIFT key selects a range of consecutive

attributes, and holding down CTRL toggles individual attributes on and off. To cancel the selection,

back out with the Cancel button. To activate it, click the Select button. The next time clustering is

invoked, the selected attributes are ignored.

1.5.5.4.4. Learning Clusters

The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a result

list. These all behave just like their classification counterparts. Right-clicking an entry in the result list

brings up a similar menu, except that it shows only two visualization options: Visualize cluster

assignments and Visualize tree. The latter is grayed out when it is not applicable.

1.5.5.5. Associating

1.5.5.5.1. Setting Up

This panel contains schemes for learning association rules, and the learners are chosen and configured

in the same way as the clusterers, filters, and classifiers in the other panels.

1.5.5.5.2. Learning Associations

Once appropriate parameters for the association rule learner bave been set, click the Start button.

When complete, right-clicking on an entry in the result list allows the results to be viewed or saved.

1.5.5.6. Selecting Attributes

1.5.5.6.1. Searching and Evaluating

Attribute selection involves searching through all possible combinations of attributes in the data to

find which subset of attributes works best for prediction. To do this, two objects must be set up: an

29

attribute evaluator and a search method. The evaluator determines what method is used to assign a

worth to each subset of attributes. The search method determines what style of search is performed.

The Attribute Selection Mode box has two options:

1. Use full training set. The worth of the attribute subset is determined using the full set of training

data.

2. Cross-validation. The worth of the attribute subset is determined by a process of cross-validation.

The Fold and Seed fields set the number of folds to use and the random seed used when shuffling the

data. There is a drop-down box that can be used to specify which attribute to treat as the class.

1.5.5.6.2. Performing Selection

Clicking Start starts running the attribute selection process. When it is finished, the results are output

into the result area, and an entry is added to the result list. Right-clicking on the result list gives

several options. The first three, (View in main window, View in separate window and Save result

buffer), are the same as for the classify panel. It is also possible to Visualize reduced data, or if you

have used an attribute transformer such as Principal Components, Visualize transformed data.

1.5.5.7. Visualizing

WEKA’s visualization section allows you to visualize 2D plots of the current relation.

1.5.5.7.1. The scatter plot matrix

When you select the Visualize panel, it shows a scatter plot matrix for all the attributes, color coded

according to the currently selected class. It is possible to change the size of each individual 2D plot

and the point size, and to randomly jitter the data (to uncover obscured points). It also possible to

change the attribute used to color the plots, to select only a subset of attributes for inclusion in the

scatter plot matrix, and to sub sample the data. Note that changes will only come into effect once the

Update button has been pressed.

1.5.5.7.2. Selecting an individual 2D scatter plot

When you click on a cell in the scatter plot matrix, this will bring up a separate window with a

visualization of the scatter plot you selected.

1.5.5.7.3. Selecting Instances

A group of data points can be selected in four ways:

a. Select Instance. Clicking on an individual data point brings up a window listing its attributes.

If more than one point appears at the same location, more than one set of attributes is shown.

b. Rectangle. You can create a rectangle, by dragging, that selects the points inside it.

30

c. Polygon. You can build a free-form polygon that selects the points inside it. Left-click to add

vertices to the polygon, right-click to complete it. The polygon will always be closed off by

connecting the first point to the last.

d. Polyline. You can build a polyline that distinguishes the points on one side from those on the

other. Left-click to add vertices to the polyline, right-click to finish. The resulting shape is open

(as opposed to a polygon, which is always closed). Once an area of the plot has been selected

using Rectangle, Polygon or Polyline, it turns grey. At this point, clicking the Submit button

removes all instances from the plot except those within the grey selection area. Clicking on the

Clear button erases the selected area without affecting the graph. Once any points have been

removed from the graph, the Submit button changes to a Reset button. This button undoes all

previous removals and returns you to the original graph with all points included. Finally,

clicking the Save button allows you to save the currently visible instances to a new ARFF file.

2. Examples

2.1. Practice WEKA with the classification example about Play Golf

Data format: the Datasets for WEKA are formatted according to the arff format. For this example

you will use the file weather.nominal.arff as a training file to construct a classification model. Save

the file in your workspace for example (C:\WEKA_Tutorial), and open it in a text processor to see an

example of the arff format; note that the last attribute corresponds to the class.

Run WEKA in the Windows environment:

Find the WEKA directory in your machine (C:\Program Files\WEKA-3-4). Double click in the

file"WEKA.jar"; Select the option "Simple CLI". Now you are ready to run WEKA using some

commands in this window.

Probe the example with different classifiers, and compare the results obtained with each of the

classifiers for example in terms of and number of examples correctly and incorrectly classified:

Decision Trees: In order to probe decision tree you will use the Id3 classifier. Type the following

command:

java WEKA.classifiers.trees.Id3 -t PATH/weather.nominal.arff

(note that the option -t calls the training file according the PATH location of this file in your

machine)

Support Vector Machines: In order to probe the SVM classifier, type the following command

java WEKA.classifiers.functions.SMO -t PATH/weather.nominal.arff

31

Neural Networks: In order to probe the NNs classifier, type the following command:

 java WEKA.classifiers.functions.VotedPerceptron -t PATH/weather.nominal.arff

Naive Bayes: In order to probe the NB classifier, type the following command:

java WEKA.classifiers.bayes.NaiveBayes -t PATH/weather.nominal.arff

Save the classification model and then use it to classify new examples: You can save the

classification model generated by each one of the above classifiers by using the option -d in the

following way:

java WEKA.classifiers.TYPE.CLASSIFIER_NAME -t PATH/weather.nominal.arff -d

PATH/modelname.model

You should generate a file that contains the model; this can be named for example in the form:

weather_Id3.model

weather_SVM.model

weather_NN.model

weather_NB.model

e.g. by

java WEKA.classifiers.trees.Id3 -t PATH/weather.nominal.arff -d PATH/weather_Id3.model

In order to use the stored model to classify new examples, use the file "test_weather.arff" (save this

file in the same folder than weather.nominal.arff and *.model files). In this file you have two

examples without classification. Then classify these examples using the models previously generated

in the following way:

java WEKA.classifiers.~.classifier_name -T PATH/test_weather.arff -l

PATH/modelname.model -p 0

In this case you use the options: -T that calls a test file (test_weather.arff); and -l that call the model

file to be used. Compare the results obtained using the four models generated.

2.2. Classification of breast cancer examples

Download the file Breast_Cancer.arff that include a set of 699 cases, 9 attributes and the class

attribute related to the type of cancer cell (in this dataset class 4 is equivalent to malignant cells and

class 2 is equivalent to benign cells). This dataset is from the Wisconsin Breast Cancer Database

(January 8, 1991). You can look for this and others examples of dataset in this link.

32

2.3. Classification of Gene expression data

Download the file ALLAML.arff ((Golub et al 1999)) gene expression data that include 72 examples,

7129 genes (attributes) and 2 clases "acute myeloid leukemia (AML)" and "acute lymphoblastic

leukemia (ALL)". For more information you can read the gene list in the file

ALLAML.gene_names.txt, and in the paper Golub et al 1999.

Classify the examples in this dataset (ALL or AML class) using the four classifiers mentioned in the

exercise 1, and compare the results.

Interpretation: Go to PubMed and search the selected genes, do they have any biological meaning?

Can you identify the unknown gene function? (Try using other bioinformatics tools)

3. Assignments

3.1 Become familiar with the vowel data set and use it to perform the following experiments:

a. Remove the first three attributes as well as the class attribute.

b. Cluster the data using the simple k-Means algorithm, with values of k from 1 to 12. What do

you see?

c. Now add the class attribute back in and repeat the clustering, comparing the clustering with

the class. How well does the clustering appear to correlate with class? What might this mean?

d. Choose several different classifiers and use them to classify the data. How does their

performance compare with the clustering's "performance"? Is this something you might

expect?

e. Does adding back in any of the original first three attributes have any effect on either the

clustering or the classification performance?

33

WORKING WITH DATA IN WEKA

Purpose:

− Attribute-Relation File Format (ARFF)

− Managing the data flow using WEKA

1 Preparation Before Lab

Attribute-Relation File Format (ARFF): An ARFF (Attribute-Relation File Format) file is

an ASCII text file that describes a list of instances sharing a set of attributes. ARFF files have

two distinct sections. The first section is the Header information, which is followed the Data

information.

The Header of the ARFF file contains the name of the relation, a list of the attributes (the

columns in the data), and their types.

The Data of the ARFF file looks like the following:

@DATA

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and

@DATA declarations are case insensitive.

The ARFF Header Section

The ARFF Header section of the file contains the relation declaration and attribute

declarations.

The @relation Declaration

The relation name is defined as the first line in the ARFF file. The format is:

@relation <relation-name>

where <relation-name> is a string. The string must be quoted if the name includes spaces.

The @attribute Declarations

Attribute declarations take the form of an ordered sequence of @attribute statements. Each

attribute in the data set has its own @attribute statement which uniquely defines the name of

34

that attribute and it's data type. The order the attributes are declared indicates the column

position in the data section of the file. For example, if an attribute is the third one declared

then Weka expects that all that attributes values will be found in the third comma delimited

column.

The format for the @attribute statement is:

@attribute <attribute-name> <datatype>

where the <attribute-name> must start with an alphabetic character. If spaces are to be

included in the name then the entire name must be quoted.

The <datatype> can be any of the four types currently supported by Weka:

• numeric

• <nominal-specification>

• string

• date [<date-format>]

where <nominal-specification> and <date-format> are defined below. The keywords

numeric, string and date are case insensitive.

Numeric attributes: Numeric attributes can be real or integer numbers.

Nominal attributes: Nominal values are defined by providing an <nominal-specification>

listing the possible values: {<nominalname1>, <nominal-name2>, <nominal-name3>, ...}

For example, the class value of the Iris dataset can be defined as follows:

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

Values that contain spaces must be quoted.

String attributes: String attributes allow us to create attributes containing arbitrary textual

values. This is very useful in text-mining applications, as we can create datasets with string

attributes, then write Weka Filters to manipulate strings (like StringToWordVectorFilter).

String attributes are declared as follows:

@ATTRIBUTE LCC string

Date attributes: Date attribute declarations take the form:

@attribute <name> date [<date-format>]

where <name> is the name for the attribute and <date-format> is an optional string specifying

how date values should be parsed and printed. The default format string accepts the ISO-8601

combined date and time format:

"yyyy-MM-dd'T'HH:mm:ss".

35

Dates must be specified in the data section as the corresponding string representations of the

date/time

ARFF Data Section

The ARFF Data section of the file contains the data declaration line and the actual instance

lines.

The @data Declaration

The @data declaration is a single line denoting the start of the data segment in the file. The

format is:

@data

The instance data

Each instance is represented on a single line, with carriage returns denoting the end of the

instance. Attribute values for each instance are delimited by commas. They must appear in

the order that they were declared in the header section (i.e. the data corresponding to the nth

@attribute declaration is always the nth field of the attribute).

Missing values are represented by a single question mark, as in:

@data

4.4,?,1.5,?,Iris-setosa

Values of string and nominal attributes are case sensitive, and any that contain space must be

quoted, as follows:

@relation LCCvsLCSH

@attribute LCC string

@attribute LCSH string

@data

AG5, 'Encyclopedias and dictionaries.;Twentieth century.'

AS262, 'Science -- Soviet Union -- History.'

Dates must be specified in the data section using the string representation specified in the

attribute declaration. For example:

@RELATION Timestamps

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"

@DATA

"2001-04-03 12:12:12"

36

Sparse ARFF files

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be explicitly

represented. Sparse ARFF files have the same header (i.e @relation and @attribute tags) but

the data section is different. Instead of representing each value in order, like this:

@data

0, X, 0, Y, "class A"

0, 0, W, 0, "class B"

the non-zero attributes are explicitly identified by attribute number and their value stated, like

this:

@data

{1 X, 3 Y, 4 "class A"}

{2 W, 4 "class B"}

Each instance is surrounded by curly braces, and the format for each entry is: <index>

<space> <value> where index is the attribute index (starting from 0).

Note that the omitted values in a sparse instance are 0, they are not "missing" values! If a

value is unknown, you must explicitly represent it with a question mark (?).

3. Weka GUI

3.1. The Command Line Interface

- One can use the command line interface of Weka either through a command prompt

or through the SimpleCLI mode

- For example to fire up Weka and run J48 on a ARFF file present in the current

working directory, the command is:

Java weka.ctassifiers.trees.J48 -t weather.arff

- Weka consists of a hierarchical package system. For example here J48 program is part

of the trees package which further resides in the classifier package. Finally the weka

package contains the classifiers package

- Each time the Java virtual machine executes J48, it creates an instance of this class by

allocating memory for building and storing a decision tree classifier

- The -t option was used in the command line to communicate the name of the training

file to the learning algorithm

37

Weka.filters

The weka.filters package is concerned with classes that transform datasets -- by removing or

adding attributes, resampling the dataset, removing examples and so on. This package offers

useful support for data preprocessing, which is an important step in machine learning.

All filters offer the options -i for specifying the input dataset, and -o for specifying the output

dataset. If any of these parameters is not given, this specifies standard input resp. output for

use within pipes. Other parameters are specific to each filter and can be found out via -h, as

with any other class. The weka.filters package is organized into supervised and unsupervised

filtering, both of which are again subdivided into instance and attribute filtering. We will

discuss each of the four subsection separately.

3.1.1.Weka.filters.supervised

Classes below weka.filters.supervised in the class hierarchy are for supervised filtering, i.e.

taking advantage of the class information. A class must be assigned via -c, for WEKA default

behaviour use -c last.

3.1.1.1.Attribute

Discretize is used to discretize numeric attributes into nominal ones, based on the class

information, via Fayyad & Irani's MDL method, or optionally with Kononeko's MDL

method. At least some learning schemes or classifiers can only process nominal data, e.g.

rules.Prism; in some cases discretization may also reduce learning time.

java weka.filters.supervised.attribute.Discretize -i data/iris.arff -o iris-nom.arff -c last

java weka.filters.supervised.attribute.Discretize -i data/cpu.arff -o cpu-classvendor-

nom.arff -c first

NominalToBinary encodes all nominal attributes into binary (two-valued) attributes, which

can be used to transform the dataset into a purely numeric representation, e.g. for

visualization via multi-dimensional scaling.

java weka.filters.supervised.attribute.NominalToBinary -i data/contact-lenses.arff -o

contact-lenses-bin.arff -c last

Keep in mind that most classifiers in WEKA utilize transformation filters internally, e.g.

Logistic and SMO, so you will usually not have to use these filters explicity. However, if you

plan to run a lot of experiments, pre-applying the filters yourself may improve runtime

performance.

38

3.1.1.2.Instance

Resample creates a stratified subsample of the given dataset. This means that overall class

distributions are approximately retained within the sample. A bias towards uniform class

distribution can be specified via -B.

java weka.filters.supervised.instance.Resample -i data/soybean.arff -o soybean-

5%.arff -c last -Z 5

java weka.filters.supervised.instance.Resample -i data/soybean.arff -o soybean-

uniform-5%.arff -c last -Z

5 -B 1

StratifiedRemoveFolds creates stratified cross-validation folds of the given dataset. This

means that per default the class distributions are approximately retained within each fold. The

following example splits soybean.arff into stratified training and test datasets, the latter

consisting of 25% (=1/4) of the data.

java weka.filters.supervised.instance.StratifiedRemoveFolds -i data/soybean.arff -o

soybean-train.arff \

-c last -N 4 -F 1 -V

java weka.filters.supervised.instance.StratifiedRemoveFolds -i data/soybean.arff -o

soybean-test.arff \

-c last -N 4 -F 1

3.1.2.Weka.filters.unsupervised

Classes below weka.filters.unsupervised in the class hierarchy are for unsupervised filtering,

e.g. the non-stratified version of Resample. A class should not be assigned here.

3.1.2.1.Attribute

StringToWordVector transforms string attributes into a word vectors, i.e. creating one

attribute for each word which either encodes presence or word count (-C) within the string. -

W can be used to set an approximate limit on the number of words. When a class is assigned,

the limit applies to each class separately. This filter is useful for textmining.

Obfuscate renames the dataset name, all attribute names and nominal attribute values. This is

intended for exchanging sensitive datasets without giving away restricted information.

Remove is intended for explicit deletion of attributes from a dataset, e.g. for removing

attributes of the iris dataset:

39

java weka.filters.unsupervised.attribute.Remove -R 1-2 -i data/iris.arff -o iris-

simplified.arff

java weka.filters.unsupervised.attribute.Remove -V -R 3-last -i data/iris.arff -o iris-

simplified.arff

3.1.2.2.Instance

Resample creates a non-stratified subsample of the given dataset, i.e. random sampling

without regard to the class information. Otherwise it is equivalent to its supervised variant.

java weka.filters.unsupervised.instance.Resample -i data/soybean.arff -o soybean-

5%.arff -Z 5

RemoveFolds creates cross-validation folds of the given dataset. The class distributions are

not retained. The following example splits soybean.arff into training and test datasets, the

latter consisting of 25% (=1/4) of the data.

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff -o soybean-

train.arff -c last -N

4 -F 1 -V

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff -o soybean-

test.arff -c last -N 4

-F 1

RemoveWithValues filters instances according to the value of an attribute.

java weka.filters.unsupervised.instance.RemoveWithValues -i data/soybean.arff \

-o soybean-without_herbicide_injur

General options

Option Function

-t <training file> Specify training file

-T <test file> Specify test file; if none, a cross-validation is

performed on the training data

-c <class index> Specify index of class attribute

-s <random number stxxi> Specify random number seed for cross-validation

-x <number of folds> Specify number of folds for cross-valioation

-m<cost matrix file> Specify file containing cost matrix

40

-d <output file> Specify output file for model

-1 <input file> Specify input file for model

o Output statistics only, not the classifier

-i Output information retrieval statistics for two-class

problems

-k Output information-theoretical statistics

-p <attribute range> Output predictions for test instances

-v Output no statistics for training data

r Output cumulative margin distribution

-z <class name> Output source representation of classifier

-g Output graph representation of classifier

3.2. Explorer

Start up Weka. You will have a choice between the Command Line Interface, the

Experimenter, the Explorer and Knowledge flow. Initially, we'll stick with the Explorer.

Once you click on that you'll see the main GUI.

41

You now have a number of choices, but before you can work with any data, you'll have to

load it into Weka. For now, we'll use one of the datasets that are included, but later on you'll

have to get any file you'll use into the right format. Open a file from the data subcategory, for

example the Iris data to find the following screen.

You'll notice that Weka now provides some information about the data, such as for

example the number of instances, the number of attributes, and also some statistical

information about the attributes one at a time. Figure out how to switch between attributes for

which this statistical information is displayed.

Visualization

There are a number of ways in which you can use Weka to visualize your data. The main

GUI will show a histogram for the attribute distributions for a single selected attribute at a

time, by default this is the class attribute. Note that the individual colors indicate the

individual classes (the Iris dataset has 3). If you move the mouse over the histogram, it will

show you the ranges and how many samples fall in each range. The button VISUALIZE ALL

will let you bring up a screen showing all distributions at once as in the picture below.

42

There is also a tab called VISUALIZE. Clicking on that will open the scatter plots for all

attribute pairs:

From these scatter plots, we can infer a number of interesting things. For example, in

the picture above we can see that in some examples the clusters (for now, think of clusters as

collections of points that are physically close to each other on the screen) and the different

colors correspond to each other such as for example in the plots for class/(any attribute) pairs

and the petal width/petal length attribute pair, whereas for other pairs (sepal width/sepal

length for example) it's much harder to separate the clusters by color.

By default, the colors indicate the different classes, in this case we used red and two

shades of blue. Left clicking on any of the highlighted class names towards the bottom of the

screenshot allows you to set your own color for the classes. Also, by default, the color is used

in conjunction with the class attribute, but it can be useful to color the other attributes as well.

43

For example, changing the color to the fourth attribute by clicking on the arrow next to the

bar that currently reads Color: class (Num) and selecting pedalwidth enables us to observe

even more about the data, for example the fact that for the class/sepallength attribute pair,

which range of attribute values (indicated by different color) tends to go along with which

class.

Filters

There are also a number of filters available, which apply different criterial to select

either objects (the rows in your data matrix) or attributes (the columns in your data matrix).

This allows you to discard parts of your matrix without having to manipulate your original

data file. For example, you can look at subsets of attributes, discard the first 20 rows,

normalize or discretize atttributes and so on. To apply a filter, you first have to select which

type of filter you'd like by clicking on the CHOOSE button right underneath Filter in your

main GUI. Double clicking on the FILTER folder that appeared will expand the window to

show two folders named supervised and unsupervised, both of which you can expand again.

Both unsupervised and supervised filters can be applied to objects and attributes. Once you

have chosen a filter, the selected option will show up in the bar next to FILTER, but at this

stage, nothing has happened to your data yet. You then have to press apply to actually filter

your data. There is alsoa SAVE button which allows you to save any changes you made to

your data. Make sure you don't overwrite your original data file!

The log file

The log file is used to keep track of what you did. Clicking on LOG in your main GUI

will bring up another window which will show exactly what you did, in this case it shows that

we loaded the Iris data set and applied a filter.

44

Selecting Attributes

 Weka also provides techniques to discard irrelevant attributes or reduce the

dimensionality of your dataset. After loading a dataset, click on the select attributes tag to

open a GUI which will allow you to choose both the evaluation method (such as Principal

Components Analysis for example) and the search method (f. ex. greedy or exhaustive

search). Depending on the chosen combination, the actual time spend on selecting attributes

can vary substantially and can also be very long, even for small datasets such as the Iris data

with only five features (including the class attribute) for each of the 150 samples. The picture

below shows the results for a sample application. It is also important to note that not all

evaluation/search method combinations are valid, watch out for the error message in the

Status bar. There's also a problem using Discretize while in the preprocessing mode, which

leads to false results. If you need to use this filter, you can work around this by using the

FilteredClassifier option in the classify menu.Weka also provides techniques to discard

irrelevant attributes or reduce the dimensionality of your dataset. After loading a dataset,

click on the select attributes tag to open a GUI which will allow you to choose both the

evaluation method (such as Principal Components Analysis for example) and the search

method (for. ex. greedy or exhaustive search). Depending on the chosen combination, the

actual time spend on selecting attributes can vary substantially and can also be very long,

even for small datasets such as the Iris data with only five features (including the class

attribute) for each of the 150 samples. The picture below shows the results for a sample

application. It is also important to note that not all evaluation/search method combinations are

valid, watch out for the error message in the Status bar. There's also a problem using

Discretize while in the preprocessing mode, which leads to false results. If you need to use

this filter, you can work around this by using the FilteredClassifier option in the classify

menu.

45

Classification

 Clicking on the classifier tab after loading a dataset into Weka and selecting the choose

tab will bring up a menu with a number of choices for the classifier that is to be applied to the

dataset. Note that you have 4 options on how to test the model you're building: Using the test

set, a training set (you will need to specify the location of the training set in this case), cross

validation and a percentage. The achieved accuracy of your model will vary, depending on

the option you select. One pitfall to avoid is to select the training set as a test set, as that will

result in

an underestimate of the error rate. The resulting model, with a lot of additional information

will be displayed after you click on start. What exactly is contained in the output can be

determined under options. A sample output for applying the J48 decision tree algorithm to the

Iris dataset is shown in the Figure below.

46

One of the things to watch out for is that the confusion matrix is displayed, as this gives a lot

more information than just the prediction accuracy. Other useful things are the options

showing up when right clicking the results list on the bottom right. For example, this is where

you can load and save the models you built, as well as save the results page. Another fact to

keep in mind is that Weka gives hints on how to achieve the same result from the command

line: look at what is displayed next to the Choose button and how it changes with the options

that you select. This information can also be found towards the top of your results page.

Clustering

The clustering option is very similar to the classification described above, with a few

differences regarding the options you select. For instance, there is an easy way to discard

undesired attributes.

47

Association Rules

Weka also provides three algorithms to extract association rules from non-numerical

data as shown in the picture below.

3.3. Experimenter

 The experimenter, which can be run from both the command line and a GUI, is a tool

that allows you to perform more than one experiment at a time, maybe applying different

techniques to a datasets, or the same technique repeatedly with different parameters. The

Weka homepage provides a link to a tutorial for an earlier version of the Experimenter, which

can be downloaded from here.

If you choose the experimenter after starting Weka, you get the following screen.

48

After selecting new, which initializes a new experiment with default parameters, you

can select where you want to store the results of your experiment by using browse (there are a

number of choices available for the format of your results file). You can then change the

default parameters if desired (watch out for the option of selecting classification or

regression). For example, you can add more datasets, delete the ones you already selected as

well as add and delete algorithms applied to your selected datasets. You can also the type of

experiment (cross validation or a percentage split for the training and test set).

The following picture shows the setup for a n 8 fold cross validation, applying a

decision tree and Naive Bayes to the iris and labor dataset that are included in the Weka

Package. The results are to be stored in an ARFF file called MyResults.arff in the specified

subfolder

After running your experiment by selecting Start from the Run tab, your results will

be stored in the specified Results file if the run was successful. You then need to load this file

into Weka from the Analysis pane to see your results. The picture below shows the Analysis

pane after loading the results file for the experiment set up above.

49

3.4. Knowledge Flow

The knowledge flow is an alternative interface to the functionality provided by the

Weka data mining package. WEKA components are selected from a tool bar, positioned a

layout canvas, and connected into a directed graph to model a complete system that processes

and analyzes data.

Components available in the KnowledgeFlow:

3.4.1. DataSources

- used to indicate where data is coming from

- supports various file types and sources

- configurable for

o file name of data source

o dataset or instance (incremental) loading

All of WEKA’s loaders are available.

50

3.4.2. DataSinks

- used to indicate where data is going to be written

- supports various file types and sources

- configurable for

o file name of data source

All of WEKA’s savers are available.

3.4.3. Filters

 used to preprocess data prior to classification or learning

 supports both supervised and unsupervised filters

 configurable depending on filter type

All of WEKA’s filters are available.

3.4.4. Classifiers

 supports all classification algorithms presented in the textbook

 parameters are configurable depending on classification algorithm

All of WEKA’s classifiers are available.

51

3.4.5. Clusterers

 supports all clustering algorithms presented in the textbook

 parameters are configurable depending on clustering algorithm

All of WEKA’s clusterers are available

3.4.6. Evaluation

- used to configure both inputs to and outputs from algorithms

- supports various algorithm performance evaluators

- output format fairly “standardized”

• TrainingSetMaker - make a data set into a training set

• TestSetMaker - make a data set into a test set.

• CrossValidationFoldMaker - split any data set, training set or test set into

folds.

• TrainTestSplitMaker - split any data set, training set or test set into a training

set and a test set.

• ClassAssigner - assign a column to be the class for any data set, training set or

test set.

• ClassValuePicker - choose a class value to be considered as the “positive”

class. This is useful when generating data for ROC style curves (see

ModelPerformanceChart below and example 4.2).

• ClassifierPerformanceEvaluator - evaluate the performance of batch

trained/tested classifiers.

• IncrementalClassifierEvaluator - evaluate the performance of incrementally

trained classifiers.

• ClustererPerformanceEvaluator - evaluate the performance of batch

trained/tested clusters.

52

• PredictionAppender - append classifier predictions to a test set. For discrete

class problems, can either append predicted class labels or probability

distributions.

3.4.7. Visualization

 used to visually display outputs

 supports performance and summaries

 comparable to options from Explorer interface

• DataVisualizer - component that can pop up a panel for visualizing data in a

single large 2D scatter plot.

• ScatterPlotMatrix - component that can pop up a panel containing a matrix of

small scatter plots (clickingon a small plot pops up a large scatter plot).

• AttributeSummarizer - component that can pop up a panel containing a matrix

of histogram plots - one for each of the attributes in the input data.

• ModelPerformanceChart - component that can pop up a panel for visualizing

threshold curves.

• TextViewer - component for showing textual data. Can show data sets,

classification performance statistics

• GraphViewer - component that can pop up a panel for visualizing tree based

models.

• StripChart - component that can pop up a panel that displays a scrolling plot of

data (used for viewing the online performance of incremental classifiers).

Example1: Decision Tree Classifier

1. Specify a data source

2. Specify which attribute is the class

3. Specify cross validation

4. Specify decision tree algorithm

53

5. Specify evaluation

6. Specify evaluation output

7. To allow viewing of decision trees per fold

8. Run experiments

Example2: Incremental Learning

54

Applications

Weka was originally developed for the purpose of processing agricultural data, motivated by

the importance of this application area in New Zealand. However, the machine learning

methods and data engineering capability item bodies have grown so quickly, and so radically,

that the workbench is now commonly used in all forms of data mining applications—from

bioinformatics to competition datasets issued by major conferences such as Knowledge

Discovery in Databases.

They worked on:

- predicting the internal bruising sustained by different varieties of apple as they make

their way through a packing-house on a conveyor belt;

- predicting, in real time, the quality of a mushroom from a photograph in order to

provide automatic grading;

- classifying kiwifruit vines into twelve classes, based on visible-NIR spectra, in order

to determine which of twelve pre-harvest fruit management treatments has been

applied to the vines;

Weka has been used extensively in the field of bioinformatics. Published studies include

automated protein annotation, probe selection for gene expression arrays , plant genotype

discrimination , and classifying gene expression profiles and extracting rules from them. Text

mining is another major field of application, and the workbench has been used to

55

automatically extract key phrases from text, and for document categorization, and word sense

disambiguation. There are many projects that extend or wrap WEKA in some fashion. There

are 46 such projects listed on the Related Projects web page of the WEKA site3. Some of

these include:

• Systems for natural language processing. There are a number of tools that use WEKA for

natural language processing: GATE is a NLP workbench ; Balie performs language

identification, tokenization, sentence boundary detection and named-entity recognition;

Senseval-2 is a system for word sense disambiguation; Kea is a system for automatic

keyphrase extraction .

• Knowledge discovery in biology. Several tools using or based on WEKA have been

developed to aid data analysis in biological applications: BioWEKA is an extension to

WEKA for tasks in biology, bioinformatics, and biochemistry; the Epitopes Toolkit (EpiT) is

a platform based on WEKA for developing epitope prediction tools; maxdView and Mayday

provide visualization and analysis of microarray data.

• Distributed and parallel data mining. There are a number of projects that have extended

WEKA for distributed data mining; Weka-Parallel provides a distributed cross-validation

facility; GridWeka provides distributed scoring and testing as well as cross validation;

FAEHIM andWeka4WS make WEKA available as a web service.

• Open-source data mining systems. Several well known open-source data mining systems

provide plugins to allow access to WEKA’s algorithms. The Konstanz Information Miner

(KNIME) and RapidMiner are two such systems. The R statistical computing environment

also provides an interface toWEKA through the Rweka package.

• Scientific workflow environment. The Kepler Weka project integrates all the functionality of

WEKA into the Kepler open-source scientific workflow platform.

 Many future applications will be developed in an online setting. Recent work on data streams

has enabled machine learning algorithms to be used in situations where a potentially infinite

source of data is available. These are common in manufacturing industries with 24/7

processing. The challenge is to develop models that constantly monitor data in order to detect

changes from the steady state. Such changes may indicate failure in the process, providing

operators with warning signals that equipment needs re-calibrating or replacing.

56

NAIVE-BAYES CLASSIFICATION ALGORITHM

1. Introduction to Bayesian Classification

The Bayesian Classification represents a supervised learning method as well as a statistical

method for classification. Assumes an underlying probabilistic model and it allows us to

capture uncertainty about the model in a principled way by determining probabilities of the

outcomes. It can solve diagnostic and predictive problems. This Classification is named after

Thomas Bayes (1702-1761), who proposed the Bayes Theorem.

Bayesian classification provides practical learning algorithms and prior knowledge and

observed data can be combined. Bayesian Classification provides a useful perspective for

understanding and evaluating many learning algorithms. It calculates explicit probabilities for

hypothesis and it is robust to noise in input data.

Uses of Naive Bayes classification:

1. Naive Bayes text classification

(http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html)

The Bayesian classification is used as a probabilistic learning method (Naive Bayes text

classification). Naive Bayes classifiers are among the most successful known algorithms for

learning to classify text documents.

2. Spam filtering (http://en.wikipedia.org/wiki/Bayesian_spam_filtering)

Spam filtering is the best known use of Naive Bayesian text classification. It makes use of a

naive Bayes classifier to identify spam e-mail. Bayesian spam filtering has become a popular

mechanism to distinguish illegitimate spam email from legitimate email (sometimes called

"ham" or "bacn").[4] Many modern mail clients implement Bayesian spam filtering. Users

can also install separate email filtering programs. Server-side email filters, such as DSPAM,

SpamAssassin, SpamBayes, Bogofilter and ASSP, make use of Bayesian spam filtering

techniques, and the functionality is sometimes embedded

within mail server software itself.

3. Hybrid Recommender System Using Naive Bayes Classifier and Collaborative Filtering

(http://eprints.ecs.soton.ac.uk/18483/)

Recommender Systems apply machine learning and data mining techniques for filtering

unseen information and can predict whether a user would like a given resource. It is proposed

a unique switching hybrid recommendation approach by combining a Naïve Bayes

classification approach with the collaborative filtering. Experimental results on two different

57

data sets, show that the proposed algorithm is scalable and provide better performance in

terms of accuracy and coverage–than other algorithms while at the same time eliminates

some recorded problems with the recommender systems.

4. Online applications (http://www.convo.co.uk/x02/)

This online application has been set up as a simple example of supervised machine learning

and affective computing. Using a training set of examples which reflect nice, nasty or neutral

sentiments, we're training Ditto to distinguish between them. Simple Emotion Modelling,

combines a statistically based classifier with a dynamical model. The Naive Bayes classifier

employs single words and word pairs as features. It allocates user utterances into nice, nasty

and neutral classes, labelled +1, -1 and 0 respectively. This numerical output drives a simple

first-order dynamical system, whose state represents the simulated emotional state of the

experiment's personification, Ditto the donkey.

1.1. Independence

1.1.1. Example:

Suppose there are two events:

 M: Manuela teaches the class (otherwise it’s Andrew)

 S: It is sunny

“The sunshine levels do not depend on and do not influence who is teaching.”

1.1.2 Theory:

From P(S | M) = P(S), the rules of probability imply:

 P(~S | M) = P(~S)

 P(M | S) = P(M)

 P(M ^ S) = P(M) P(S)

 P(~M ^ S) = P(~M) P(S)

 P(M^~S) = P(M)P(~S)

 P(~M^~S) = P(~M)P(~S)

1.2.3. Theory applied on previous example:

“The sunshine levels do not depend on and do not influence who is teaching.” can be

specified

very simply:

P(S | M) = P(S)

“Two events A and B are statistically independent if the probability of A is the same value

when B occurs, when B does not occur or when nothing is known about the occurrence of B”

58

1.2. Conditional Probability

1.2.1. Simple Example:

H = “Have a headache”

F = “Coming down with Flu”

P(H) = 1/10

P(F) = 1/40

P(H|F) = ½

“Headaches are rare and flu is rarer, but if you’re coming down with ‘flu there’s a 50-50

chance

you will have a headache.”

P(H|F) = Fraction of flu-inflicted worlds in which you have a headache =

 #worlds with flu and headache Area of “H and F” region P(H ^ F)

= ------------------------------------ = ------------------------------------- = -----------

#worlds with flu Area of “F” region P(F)

1.2.2. Theory:

P(A|B) = Fraction of worlds in which B is true that also have A true

 P(A ^ B)

P(A|B) = ------------------

 P(B)

Corollary:

P(A ^ B) = P(A|B) P(B)

P(A|B)+P(¬A|B) = 1

∑ 𝑃(𝐴 = 𝑣𝑘|𝐵)

𝑛

𝑘=1

= 1

P(A| B)+P(¬A| B) =1

59

1.2.3. Detailed Example

 M : Manuela teaches the class

 S : It is sunny

 L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to

arrive late than Manuela.

Let us begin with writing down the knowledge:

P(S ½ M) = P(S), P(S) = 0.3, P(M) = 0.6

Lateness is not independent of the weather and is not independent of the lecturer. Therefore

Lateness is dependant on both weather and lecturer

1.3. Conditional Independence

1.3.1. Example:

Suppose we have these three events:

 M : Lecture taught by Manuela

 L : Lecturer arrives late

 R : Lecture concerns robots

60

Suppose:

Andrew has a higher chance of being late than Manuela.

Andrew has a higher chance of giving robotics lectures.

Once you know who the lecturer is, then whether they arrive late doesn’t affect

whether the lecture concerns robots.

1.3.2. Theory:

R and L are conditionally independent given M if for all x,y,z in {T,F}:

P(R=x | M=y ^ L=z) = P(R=x | M=y)

More generally:

Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are conditionally independent given S3 if

for all assignments of values to the variables in the sets, P(S1’s assignments ½ S2’s

assignments & S3’
s
 assignments)= P(S1’

s
 assignments | S3’

s
 assignments)

P(A|B) = P(A ^B)/P(B)

Therefore P(A^B) = P(A|B).P(B) – also known as Chain Rule

Also P(A^B) = P(B|A).P(A)

Therefore P(A|B) = P(B|A).P(A)/P(B)

P(A,B|C) = P(A^B^C)/P(C)

= P(A|B,C).P(B^C)/P(C) – applying chain rule

= P(A|B,C).P(B|C)

= P(A|C).P(B|C) , If A and B are conditionally independent given C.

This can be extended for n values as P(A1,A2…An|C) = P(A1|C).P(A2|C)…P(An|C) if

A1,A2…An are conditionally independent given C.

1.3.3. Theory applied on previous example:

For the previous example, we can use the following notations:

P(R | M,L) = P(R | M) and P(R | ~M,L) = P(R | ~M)

We express this in the following way:

“R and L are conditionally independent given M”

2. Bayes Theorem

61

Bayesian reasoning is applied to decision making and inferential statistics that deals with

probability inference. It is used the knowledge of prior events to predict future events.

Example: Predicting the color of marbles in a basket

2.1. Example:

Table1: Data table

2.2. Theory:

The Bayes Theorem:

P(h/D) = P(D/h) P(h)

P(D)

P(h) : Prior probability of hypothesis h

P(D) : Prior probability of training data D

P(h/D) : Probability of h given D

P(D/h) : Probability of D given h

62

2.3. Theory applied on previous example:

 D : 35 year old customer with an income of $50,000 PA

 h : Hypothesis that our customer will buy our computer

P(h/D) : Probability that customer D will buy our computer given that we know his age

and income

P(h) : Probability that any customer will buy our computer regardless of age (Prior

Probability)

P(D/h) : Probability that the customer is 35 yrs old and earns $50,000, given that he has

bought our computer (Posterior Probability)

P(D) : Probability that a person from our set of customers is 35 yrs old and earns $50,000

2.4. Maximum A Posteriori (MAP) Hypothesis

2.4.1. Example:

h1: Customer buys a computer = Yes

h2 : Customer buys a computer = No

where h1 and h2 are subsets of our Hypothesis Space ‘H’

P(h/D) (Final Outcome) = arg max{ P(D/h1) P(h1) , P(D/h2) P(h2)}

P(D) can be ignored as it is the same for both the terms

2.4.2. Theory:

Generally we want the most probable hypothesis given the training data hMAP = arg max

P(h/D) (where h belongs to H and H is the hypothesis space)

hMAP = arg max P(D/h) P(h)

 P(D)

hMAP = arg max P(D/h) P(h)

63

2.5. Maximum Likelihood (ML) Hypothesis

2.5.1. Example:

Table 2

2.5.2. Theory:

If we assume P(hi) = P(hj) where the calculated probabilities amount to the same. Further

simplification leads to:

hML = arg max P(D/hi) (where hi belongs to H)

2.5.3. Theory applied on previous example:

P (buys computer = yes) = 5/10 = 0.5

P (buys computer = no) = 5/10 = 0.5

P (customer is 35 yrs & earns $50,000) = 4/10 = 0.4

64

P (customer is 35 yrs & earns $50,000 / buys computer = yes) = 3/5 =0.6

P (customer is 35 yrs & earns $50,000 / buys computer = no) = 1/5 = 0.2

Customer buys a computer P(h1/D) = P(h1) * P (D/ h1) / P(D) = 0.5 * 0.6 / 0.4

Customer does not buy a computer P(h2/D) = P(h2) * P (D/ h2) / P(D) = 0.5 * 0.2 / 0.4

Final Outcome = arg max {P(h1/D) , P(h2/D)} = max(0.6, 0.2)

=> Customer buys a computer

3. Naïve Bayesian Classification

It is based on the Bayesian theorem It is particularly suited when the dimensionality of the

inputs is high. Parameter estimation for naive Bayes models uses the method of maximum

likelihood. In spite over-simplified assumptions, it often performs better in many complex

realworld situations. Advantage: Requires a small amount of training data to estimate the

parameters

3.1. Example

X = (age= youth, income = medium, student = yes, credit_rating = fair)

A person belonging to tuple X will buy a computer?

3.2.Theory:

Derivation:

D : Set of tuples

 Each Tuple is an ‘n’ dimensional attribute vector

65

 X : (x1,x2,x3,…. xn)

Let there be ‘m’ Classes : C1,C2,C3…Cm

Naïve Bayes classifier predicts X belongs to Class Ci iff

 P (Ci/X) > P(Cj/X) for 1<= j <= m , j <> i

Maximum Posteriori Hypothesis

 P(Ci/X) = P(X/Ci) P(Ci) / P(X)

 Maximize P(X/Ci) P(Ci) as P(X) is constant

With many attributes, it is computationally expensive to evaluate P(X/Ci).

Naïve Assumption of “class conditional independence”

𝑃 (
𝑋

. 𝐶𝑖
) = ∏ 𝑃(𝑥𝑘/𝐶𝑖)

𝑛

𝑘=1

P(X/Ci) = P(x1/Ci) * P(x2/Ci) *…* P(xn/ Ci)

3.3. Theory applied on previous example:

P(C1) = P(buys_computer = yes) = 9/14 =0.643

P(C2) = P(buys_computer = no) = 5/14= 0.357

P(age=youth /buys_computer = yes) = 2/9 =0.222

P(age=youth /buys_computer = no) = 3/5 =0.600

P(income=medium /buys_computer = yes) = 4/9 =0.444

P(income=medium /buys_computer = no) = 2/5 =0.400

P(student=yes /buys_computer = yes) = 6/9 =0.667

P(student=yes/buys_computer = no) = 1/5 =0.200

P(credit rating=fair /buys_computer = yes) = 6/9 =0.667

P(credit rating=fair /buys_computer = no) = 2/5 =0.400

P(X/Buys a computer = yes) = P(age=youth /buys_computer = yes) * P(income=medium

/buys_computer = yes) * P(student=yes /buys_computer = yes) * P(credit rating=fair

/buys_computer = yes) = 0.222 * 0.444 * 0.667 * 0.667 = 0.044

P(X/Buys a computer = No) = 0.600 * 0.400 * 0.200 * 0.400 = 0.019

Find class Ci that Maximizes P(X/Ci) * P(Ci)

=>P(X/Buys a computer = yes) * P(buys_computer = yes) = 0.028

=>P(X/Buys a computer = No) * P(buys_computer = no) = 0.007

Prediction : Buys a computer for Tuple X

66

4. Sample running example with weka

4.1. Bayesian Network Classifiers in Weka

Let U = {x1,... ,xn}, n ~ 1 be a set of variables. A Bayesian network B over a set of variables

U is a network structure BS, which is a directed acyclic graph (DAG) over U and a set of

probability tables BP = {p(u|pa(u))|u 2 U} where pa(u) is the set of parents of u in BS. A

Bayesian network represents a probability distributions P(U) = Q u2U p(u|pa(u)).

Below, a Bayesian network is shown for the variables in the iris data set. Note that the links

between the nodes class, petal length and petal width do not form a directed cycle, so the

graph is a proper DAG.

4.2. Conditional independence test based structure learning

Conditional independence tests in Weka are slightly different from the standard tests

described

in the literature. To test whether variables x and y are conditionally independent given a set

of variables Z, a network structure with arrows "zÎzz ® y is compared with one with arrows

{x® y} È "zÎzz ®.y. A test is performed.

At the moment, only the ICS [9]and CI algorithm are implemented. The ICS algorithm makes

two steps, first find a skeleton (the undirected graph with edges iff there is an arrow in

network structure) and second direct all the edges in the skeleton to get a DAG.

Starting with a complete undirected graph, we try to find conditional independencies <x, y |

Z> in the data. For each pair of nodes x, y, we consider sets Z starting with cardinality 0, then

1 up to a user defined maximum. Further-more, the set Z is a subset of nodes that are

neighbors of both x and y. If an independency is identified, the edge between x and y is

removed from the skeleton.

The first step in directing arrows is to check for every configuration x - -z - - y where x and y

not connected in the skeleton whether z is in the set Z of variables that justified removing the

link between x and y (cached in the first step). I f z is not in Z, we can assign direction x ® z

¬y.

Finally, a set of graphical rules is applied to direct the remaining arrows.

67

The ICS algorithm comes with the following options.

Since the ICS algorithm is focused on recovering causal structure, instead of finding the

optimal classifier, the Markov blanket correction can be made afterwards.

Specific options:

The maxCardinality option determines the largest subset of Z to be considered in conditional

independence tests <x, y|Z>. The scoreType option is used to select the scoring metric.

5. Exercises

Implement, test and interpret the results for Naïve Bayes algorithm for the following

problems, using the attached input files

5.1. Being given the following binary files (imagini.zip), which represent the classes for 1, 2

and 3, you must find out the class of a digit in an image.

There will be used as attributes white pixels (value 255) and the positions of their appearance.

Algorithm:

Step 1: It is loaded the image which will be classified as being ONE, TWO or THREE

Step 2: There are loaded the images found in the folder images. The name of the files

belonging to class ONE are: “image1_*.jpg”, the ones belonging to class TWO are:

“image2_*.jpg” and the ones for class THREE are : “image3_*.jpg”.

Step3: It is determined the a priori probability for each class:

P(UNU) = NrTemplateInClassONE / NumberTotalTemplates

P(DOI) = NrTemplateInClassTWO / NumberTotalTemplates

P(TREI) = NrTemplateInClassTHREE / NumberTotalTemplates

Step 4: It is determined the probability that the image from the Step 1 to be in class ONE,

TWO or THREE. Let (i,j) be the position of a white pixel in the image. It is calculated the

probability that the pixel having the coordinates (i, j) to be white for the class ONE, TWO

and THREE.

68

count1i,j = 0

for k = 1,n ; n – the number of images in class ONE

if image1_k(i,j) = 255 then

count1i,j = count1i,j + 1

probability1(i,j) =count1i,j / NrTemplateInClassONE

count2i,j = 0

for k = 1,n ; n- the number of images in class TWO

if image2_k(i,j) = 255 then

count2i,j = count2i,j + 1

probability2(i,j) =count2i,j / NrTemplateInClassTWO

count3i,j = 0

for k = 1,n ; n- the number of images in class THREE

if image3_k(i,j) = 255 then

count3i,j = count3i,j + 1

probability 3(i,j) =count3i,j / NrTemplateInClassTHREE

Step 5.

The posteriori probability that the image in Step 1 to be in class ONE is:

P(T|ONE) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the image

from Step1

Step 6.

The posteriori probability that the image in Step 1 to be in class TWO is:

P(T|TWO) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the image

from Step1

Step 7:

The posteriori probability that the image in Step 1 to be in class THREE is:

P(T|THREE) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the

image from Step1

Step 8:

It is determined the probability P for each image class and it is assigned the image from Step1

to the class of images that has the greatest probability.

P(ONE|T) = P(T| ONE)*P(ONE)

P(TWO|T) = P(T| TWO)*P(TWO)

P(THREE|T) = P(T| THREE)*P(THREE)

69

In order to load an image and to load pixels from an image in an array, you can use the

following java code:

import java.awt.*;

import java.awt.image.*;

import java.io.*;

import javax.swing.*;

import java.util.*;

public class CImagesLoad {

Vector<Image> images1 = new Vector<Image>();

Vector<Image> images2 = new Vector<Image>();

Vector<Image> images3 = new Vector<Image>();

public String getFile(boolean isSaveDialog)

{

String currentDirectoryName = new File("").getAbsolutePath()

+File.separator;

try{

JFileChooser fc = new JFileChooser(new File(new

File(currentDirectoryName).getParent()));

int result = 0;

if(!isSaveDialog)

result = fc.showOpenDialog(null);

else

result = fc.showSaveDialog(null);

if(result==JFileChooser.CANCEL_OPTION) return null;

else { //if(result==JFileChooser.APPROVE_OPTION){

return fc.getSelectedFile().getAbsolutePath();

}

}

catch(Exception e)

{

return null;

}

}

public void load_images (int template){

70

String f = getFile(false);

if (f==null)

{

return;

}

int k = 1;

while (true)

{

String curent = new java.io.File (f).getAbsolutePath ();

int pos = curent.lastIndexOf ("\\");

curent = curent.substring (0, pos);

if (k < 10)

{

curent += "\\image" + template + "_0" + k + ".jpg";

}

else

{

curent += "\\image" + template + "_" + k + ".jpg";

}

Image img = null;

img = new javax.swing.ImageIcon(curent).getImage();

if(img==null || img.getWidth(null)<=0 ||img.getHeight(null)<=0)

{

System.out.println("The file \n" + f.toString() + "\nhas an unsupported

image format");

break;

}

else

{

k++;

switch (template)

{

case 1:

images1.add (img);

71

break;

case 2:

images2.add (img);

break;

case 3:

images3.add (img);

break;

default:

System.out.println("Other class");

break;

}

}

}

}

public void load_pixels (Image image)

{

int width = image.getWidth(null);

int height = image.getHeight(null);

// Allocate buffer to hold the image's pixels

int pixels[] = new int[width * height];

// Grab pixels

PixelGrabber pg = new PixelGrabber (image, 0, 0, width, height,

pixels, 0, width);

try

{

pg.grabPixels();

}

catch (InterruptedException e)

{

System.out.println ("Error image loading");

}

}

}

5.2. Modify 5.1 in order to classify images that are belonging to class 4.

72

5.3. Implement the example 3.1 for the following tuple X:

X = (age= youth, income = high, student = no, credit_rating = fair)

Find out if a person belonging to tuple X will buy a computer

6. References

1. http://en.wikipedia.org/wiki/Bayesian_probability

2. http://en.wikipedia.org/wiki/Naive_Bayes_classifier

3. http://www.let.rug.nl/~tiedeman/ml05/03_bayesian_handout.pdf

4. http://www.statsoft.com/textbook/stnaiveb.html

5. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch6.pdf

6. DATA MINING Concepts and Techniques, Jiawei Han, Micheline Kamber Morgan

Kaufman Publishers, 2003.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch6.pdf

73

Classification with Decision Trees

Purpose:

 Understand how to build simple baseline models for classification;

 Understand how to build decision trees for classification;

 Understand how different parameters for decision tree algorithms affect their

output;

 Assess the accuracy of several models using cross-validation;

 Communicate the information captured in the decision tree model in well written

English.

1. Theoretical Aspects

Classification is one of the major data mining tasks. Although this task is accomplished by

generating a predictive model of data, interpreting the model frequently provides information

for discriminating labeled classes in data. Decision trees provide a predictive model that is

easy to interpret to provide a description of data.

In order to believe any predictive model, the accuracy of the model must be estimated.

Several methods for evaluating the accuracy of models will be discussed during class

lectures. For this assignment, 10-fold cross validation will be used for model assessment. The

data mining task you are to perform is to provide descriptions of acceptable and unacceptable

labor contracts contained in labor.arff. You are to back up you description by the evidence

you collect by building decision tree models of the data.

1.1 Entropy

Putting together a decision tree is all a matter of choosing which attribute to test at each node

in the tree. We shall define a measure called information gain which will be used to decide

which attribute to test at each node. Information gain is itself calculated using a measure

called entropy, which we first define for the case of a binary decision problem and then

define for the general case.

Given a binary categorization, C, and a set of examples, S, for which the proportion of

examples categorized as positive by C is p+ and the proportion of examples categorized as

negative by C is p-, then the entropy of S is:

74

The reason we defined entropy first for a binary decision problem is because it is easier to get

an impression of what it is trying to calculate.

Given an arbitrary categorization, C into categories c1, ..., cn, and a set of examples, S, for

which the proportion of examples in ci is pi, then the entropy of S is:

This measure satisfies our criteria, because of the -p*log2(p) construction: when p gets close

to zero (i.e., the category has only a few examples in it), then the log(p) becomes a big

negative number, but the p part dominates the calculation, so the entropy works out to be

nearly zero. Remembering that entropy calculates the disorder in the data, this low score is

good, as it reflects our desire to reward categories with few examples in. Similarly, if p gets

close to 1 (i.e., the category has most of the examples in), then the log(p) part gets very close

to zero, and it is this which dominates the calculation, so the overall value gets close to zero.

Hence we see that both when the category is nearly - or completely - empty, or when the

category nearly contains – or completely contains - all the examples, the score for the

category gets close to zero, which models what we wanted it to. Note that 0*ln(0) is taken to

be zero by convention.

1.2 Information gain

We now return to the problem of trying to determine the best attribute to choose for a

particular node in a tree. The following measure calculates a numerical value for a given

attribute, A, with respect to a set of examples, S. Note that the values of attribute A will range

over a set of possibilities which we call Values(A), and that, for a particular value from that

set, v, we write Sv for the set of examples which have value v for attribute A.

The information gain of attribute A, relative to a collection of examples, S, is calculated as:

The information gain of an attribute can be seen as the expected reduction in entropy caused

by knowing the value of attribute A.

75

1.3 Sample calculation on Entropy and Information gain

Instances:

Weekend Weather Parents Money Decision (Category)

W1 Sunny Yes Rich Cinema

W2 Sunny No Rich Tennis

W3 Windy Yes Rich Cinema

W4 Rainy Yes Poor Cinema

W5 Rainy No Rich Stay in

W6 Rainy Yes Poor Cinema

W7 Windy No Poor Cinema

W8 Windy No Rich Shopping

W9 Windy Yes Rich Cinema

W10 Sunny No Rich Tennis

The first thing we need to do is work out which attribute will be put into the node at the top

of our tree: weather, parents or money. To do this, we need to calculate:

76

2. Decision Tree Induction Algorithm

2.1 ID3 (Iterative Dichotomiser 3)

The ID3 algorithm can be summarized as follows:

1. Take all unused attributes and count their entropy concerning test samples

2. Choose attribute for which entropy is maximum

3. Make node containing that attribute

The actual algorithm is as follows:

ID3 (Examples, Target_Attribute, Attributes)

 Create a root node for the tree

 If all examples are positive, Return the single

 If all examples are negative, Return the single

 If number of predicting attributes is empty, then Return the single node tree

label = most common value of the target attribute in the examples.

 Otherwise Begin

o A = The Attribute that best classifies examples.

o Decision Tree attribute for Root = A.

o For each possible value, vi, of A

 + Add a new tree branch below Root, corresponding to the test A = vi.

 + Let Examples(vi), be the subset of examples that have the value vi for

A

 + If Examples(vi) is empty

 Then below this new branch add a leaf node with label =

most common target value in the examples

 Else below this new branch add the subtree ID3

(Examples(vi), Target_Attribute,

Attributes – {A})

* End

* Return Root

77

2.2 C4.5 Algorithm

C4.5 builds decision trees from a set of training data in the same way as ID3, using the

concept of information entropy. The training data is a set S = s1,s2,... of already classified

samples. Each sample si = x1,x2,... is a vector where x1,x2,... represent attributes or features

of the sample. The training data is augmented with a vector C = c1,c2,... where c1,c2,...

represent the class to which each sample belongs.

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its

set of samples into subsets enriched in one class or the other. Its criterion is the normalized

information gain (difference in entropy) that results from choosing an attribute for splitting

the data. The attribute with the highest normalized information gain is chosen to make the

decision.

The C4.5 algorithm then recurses on the smaller sublists.

This algorithm has a few base cases.

 All the samples in the list belong to the same class. When this happens, it simply

creates a leaf node for the decision tree saying to choose that class.

 None of the features provide any information gain. In this case, C4.5 creates a

decision node higher up the tree using the expected value of the class.

 Instance of previously-unseen class encountered. Again, C4.5 creates a decision

node higher up the tree using the expected value.

In pseudocode, the algorithm is:

 Check for base cases

 For each attribute a

o Find the normalized information gain from splitting on a

 Let a_best be the attribute with the highest normalized information gain

 Create a decision node that splits on a_best

 Recurse on the sublists obtained by splitting on a_best, and add those nodes as

children of node

3. Build Baseline Classification Models

A baseline model is one that can be used to evaluate the success of your target model, in this

case a decision tree model. Baseline models are typically simple, an inaccurate, but

occasionally data is so simple to describe, attempting to use a complex model results in worse

behaviour than a simple model.

78

In this section, you will build and record the accuracy to two baseline modes: ZeroR and

OneR. The ZeroR model simply classifies every data item in the same class. For example, a

ZeroR model may classify all loan applications as high risk without even considering the

attributes of each data instance. The OneR model seeks to generate classification rules using

a single attribute only.

1. Start Weka. On studsys, this can be accomplished with the command:

java -jar …/weka-3-2-3/weka.jar

2. Open Weka’s Explorer interface.

3. Open labor.arff from the Explorer interface. (You may also want to open this file in a

text editor).

4. Typically, at this point, you would record a summary of your data.

5. Click on the Classify tab in the Weka window.

6. The ZeroR classifier should be selected, but if it is not, click on the rectangle

underneath the word Classifier and select the ZeroR classifier from the menu that

pops up.

7. Select the Cross-validation radio button from the Test options. Use 10 folds.

8. Make sure that the class attribute is selected as the classification label.

9. Click the Start button to build and evaluate the model. Record the results in the output

window.

10. Repeat the process, but select the OneR classifier from the Classifier menu using the

default minimum bucket size of 6.

4. Generating Decision Trees (example 1)

Once you generate your baseline models and estimate their accuracy, you can create the

target model of interest. Even though you will be creating a decision tree model, the

algorithm you will use has several parameters. You need to modify the parameters in order to

generate a reasonable model. Each time you modify a parameter, you might end up with a

different model.

1. Before generating a decision tree, set accuracy goals for you classifier based on the

accuracy of your baseline models.

2. Select the J48 algorithm for creating decision trees from the Classifier menu. Don’t

use the PART version.

79

3. Generate decision trees for the following combinations of attributes: all false,

binarySplits only true, reducedErrorPruning only true, subtreeRaising only true,

unpruned only true, useLaplace only true. Record the resulting decision trees and their

associated accuracy and error information.

4. Generate decision trees with some combinations of the boolean parameters. Note that

if you use reducedErrorPruning, the value of subtreeRaising is ignored. Again, record

the results of each trial.

5. Now, for your best model so far, attempt to find a combination of confidenceFactor,

minNumObj, numFolds that will improve your results. Use your understanding of the

theory and documentation to make good selections. Record the results of each

attempt.

5. Generating Decision Trees (example 2)

1. Start Weka. On studsys, this can be accomplished with the command:

java -jar …/weka-3-2-3/weka.jar

2. Open Weka’s Explorer interface.

3. Open credit.arff from the Explorer interface. (You may also want to open this file in a

text editor).

4. Run a decision tree classifier over the data by selecting classifiers > trees > J48 under

the Classify tab.

5. Set a confidenceFactor of 0.2 in the options dialog.

6. Use a test percentage split of 90%.

Observe the output of the classifier. The full decision tree is output for your perusal; you may

need to scroll up for this. The tree may also be viewed in graphical form by right-clicking the

run in the Result list at the bottom-left and selecting Visualize tree, although it may be very

cluttered for large trees.

 How would you assess the performance of the classifier? Hint: check the number of

good and bad cases in the test sample (e.g. using the confusion matrix)

 Looking at the decision tree itself, are the rules it applies sensible? Are there any

branches which appear absurd?

 What is the effect of the confidenceFactor option? Try increasing or decreasing the

value of this option and observe the results.

80

For comparison, we also learn a decision stump. This is a decision tree with only a single

node:

- Select the DecisionStump classifier.

- Select Cross-validation with 10 folds for the test option.

Now build the classifier, and observe the results:

- What single attribute does the algorithm use to make its decision? Do you expect this

to be useful in its own right? Hint: visualisation could assist here.

- How do the results compare to that of the J48 tree? Is this what we would expect?

- Is the stump actually discriminating between anything? Hint: return to the Preprocess

tab and observe the distribution of the Approve attribute. If

- 70% of applications are approved and 30% are not, how do we make a classifier that

is 70% accurate?

6. Assignments

1. What are acceptable and unacceptable labor contracts according to your results?

2. Compare and contrast the pruned and unpruned trees you generated.

3. Do you feel your best tree is overfitting the data? Why or why not?

4. Which class is generally better recognized by the decision trees?

5. Decision trees are limited in the kinds classification problems they can solve

6. Can you find evidence that would lead you to believe other classification techniques

would perform worse, better, or equally as well on the labor data?

81

Flat Clustering – K-Means Algorithm

Purpose:

Clustering algorithms group a set of documents into subsets or clusters. The cluster algorithms’

goal is to create clusters that are coherent internally, but clearly different from each other. In

other words, documents within a cluster should be as similar as possible; and documents in one

cluster should be as dissimilar as possible from documents in other clusters.

Clustering is the most common form of unsupervised learning. No supervision means that there

is no human expert who has assigned documents to classes. In clustering, it is the distribution and

makeup of the data that will determine cluster membership. An example is in figure 1. It is

visually clear that there are three distinct clusters of points. The difference between clustering

and classification may not seem great at first. After all, in both cases we have a partition of a set

of documents into groups. But as we will see that problems are fundamentally different.

Classification is a form of supervised learning. Our goal is to replicate a categorical distinction

that a human supervisor imposes on the data. In unsupervised learning, of which clustering is the

most important example, we have no such teacher to guide us.

The key input to a clustering algorithm is the distance measure. In Figure 1, the distance measure

is distance in the two-dimensional (2D) plane. This measure suggests three different clusters in

the figure. In document clustering, the distance measure is often Euclidean distance. Different

distance measures give rise to different clusterings. Thus, the distance measure is an important

means by which we can influence the outcome of clustering. Flat clustering creates a flat set of

clusters without any explicit structure that flat clustering would relate clusters to each other.

Figure 1: An example of a data set with a clear cluster structure.

82

A second important distinction can be made between hard and soft clustering algorithms. Hard

clustering computes a hard assignment -each document is a member of exactly one cluster. The

assignment of soft clustering algorithms is soft - a document’s assignment is a distribution over

all clusters. In a soft assignment, a document has fractional membership in several clusters.

Latent semantic indexing, a form of dimensionality reduction, is a soft clustering algorithm. This

laboratory motivates the use of clustering in information retrieval by introducing a number of

applications, defines the problem we are trying to solve in clustering, and discusses measures for

evaluating cluster quality. It then describes the K means flat clustering algorithm, and the

expectation maximization (or EM) algorithm, a soft clustering algorithm. K-means is perhaps the

most widely used flat clustering algorithm because of its simplicity and efficiency. The EM

algorithm is a generalization of K-means and can be applied to a large variety of document

representations and distributions.

1. Problem statement

We can define the goal in hard flat clustering as follows. Given

(i) A set of documents D = {d1... dN},

(ii) A desired number of clusters K

(iii) An objective function that evaluates the quality of a clustering we want to compute an

assignment ; : D→{1, ... ,K} that minimizes (or, in other cases, maximizes) the objective

function. In most cases, we also demand that ; is subjective, that is, that none of the K clusters is

empty. The objective function is often defined in terms of similarity or distance between

documents. Below, we will see that the objective in K-means clustering is to minimize the

average distance between documents and their centroids or, equivalently, to maximize the

similarity between documents and their centroids. We use both similarity and distance to talk

about relatedness between documents.

For documents, the type of similarity we want is usually topic similarity or high values on the

same dimensions in the vector space model. For example, documents about China have high

values on dimensions like Chinese, Beijing, and Mao whereas documents about the UK tend to

have high values for London, Britain, and Queen. We approximate topic similarity with cosine

similarity or Euclidean distance in vector space. If we intend to capture similarity of a type other

than topic, for example, similarity of language, then a different representation may be

appropriate. When computing topic similarity, stop word scan be safely ignored, but they are

important cues for separating clusters of English (in which 'the' occurs frequently and 'la'

infrequently) and French documents (in which 'the' occurs infrequently and 'la' frequently).

A difficult issue in clustering is determining the number of clusters or cardinality of a clustering,

which we denote by K. Often K is nothing more than a good guess based on experience or

domain knowledge. But for K-means, we will also introduce a heuristic method for choosing K

and an attempt to incorporate the selection of K into the objective function. Sometimes the

83

application puts constraints on the range of K. For example, the scatter-gather interface in

Figure16.3 could not display more than about K = 10 clusters per layer because of the size and

resolution of computer monitors in the early 1990s.

Because our goal is to optimize an objective function, clustering is essentially a search problem.

The brute force solution would be to enumerate all possible clusterings and pick the best.

However, there are exponentially many partitions, so this approach is not feasible. For this

reason, most flat clustering algorithms refine an initial partition ingiteratively. If the search starts

at an unfavorable initial point, we may miss the global optimum. Finding a good starting point is

therefore another important problem we have to solve in flat clustering.

2. K-means

K-means is the most important flat clustering algorithm. Its objective is to minimize the average

squared Euclidean distance of documents from their cluster centers where a cluster center is

defined as the mean or centroid #µ of the documents in a cluster ω: centroid

𝜇(𝜔) =
1

𝜔
∑ �⃗�

 𝑥 𝜖𝜔

 The definition assumes that documents are represented as length normalized vectors in a real

valued space in the familiar way. The ideal clustering K-means is a sphere with the centroid as its

center of gravity. Ideally, the clusters should not overlap. Our desiderata for training set in

clustering for which we know which documents should be in the same cluster classes in Rocchio

classification were the same. The difference is that we have no labelled.

 A measure of how well the centroids represent the members of their clusters is the residual sum

of squares or RSS, the squared distance of each vector residual sum of squares from its centroids

summed over all vectors:

84

𝑅𝑆𝑆𝑘 = ∑ |�⃗� − 𝜇 (𝜔𝑘)|2

 𝑥 𝜖𝜔𝑘

𝑅𝑆𝑆 = ∑ 𝑅𝑆𝑆𝑘

𝐾

𝑘=1

RSS is the objective function in K-means and our goal is to minimize it. Because N is fixed,

minimizing RSS is equivalent to minimizing the average squared distance, a measure of how

well centroids represent their documents.

The first step of K-means is to select as initial cluster centers K randomly selected documents,

the seeds. The algorithm then moves the cluster centers seed around in space to minimize RSS.

As shown in Figure16.5, this is done iteratively by repeating two steps until a stopping criterion

is met: Reassigning documents to the cluster with the closest centroid and recomputing each

centroid based on the current members of its cluster. Figure16.6 shows snapshots from nine

iterations of the K-means algorithm for a set of points. The “centroid” column of Table17.2

(page364) shows examples of centroids. We can apply one of the following termination

conditions.

A fixed number of iterations I has been completed. This condition limits The runtime of the

clustering algorithm, but in some cases the quality of the clustering will be poor because of an

insufficient number of iterations.

85

Assignment of documents to clusters (the partitioning function ;) does not change between

iterations. Except for cases with a bad local minimum, this produces a good clustering, but run-

time may be unacceptably long.

Terminate when the decrease in RSS falls below a threshold O. For small O, this indicates that

we are close to convergence. Again, we need to combine it with a bound on the number of

iterations to prevent very long run-times. We now show that K-means converges by proving that

RSS monotonically decreases in each iteration. We will use decrease in the meaning decrease or

does not change in this section. First, RSS decreases in the reassignment step; each vector is

assigned to the closest centroid, so the distance it contributes to RSS decreases. Second, it

86

decreases in the re-computation step because the new centroid is the vector v for which RSSk

reaches its minimum.

𝑅𝑆𝑆𝑘 (
𝑣
→) = ∑ |�⃗� − �⃗�|2

 𝑥 𝜖𝜔𝑘

= ∑ ∑ (𝑣𝑚 − 𝑥𝑚)2

𝑀

𝑚=1 𝑥 𝜖𝜔𝑘

𝜕𝑅𝑆𝑆𝑘 (
𝑣
→)

𝜕𝑣𝑚
= ∑ 2(𝑣𝑚 − 𝑥𝑚)

 𝑥 𝜖𝜔𝑘

where xm and vm are the m
th

 components of their respective vectors. Setting the partial

derivative to zero, we get:

𝑣𝑚 =
1

|𝜔𝑘|
∑ 𝑥𝑚

 𝑥 𝜖𝜔𝑘

which is the component wise definition of the centroid. Thus, we minimize RSSk when the old

centroid is replaced with the new centroid. RSS, the sum of the RSSk, must then also decrease

during recomputation. Because there is only a finite set of possible clusterings, a monotonically

decreasing algorithm will eventually arrive at a (local) minimum. Take care, however, to break

ties consistently, for example, by assigning a document to the cluster with the lowest index if

there are several equidistant centroids. Otherwise, the algorithm can cycle forever in a loop of

clusterings that have the same cost. Although this proves the convergence of K-means, there is

unfortunately no guarantee that a global minimum in the objective function will be reached.

This is a particular problem if a document set contains many outliers, documents that are far from

any other documents and therefore do not fit well into any cluster. Frequently, if an outlier is

chosen as an initial seed, then no other vector is assigned to it during subsequent iterations. Thus,

we end up with a singleton cluster (a cluster with only one document) even though there

singleton cluster is probably a clustering with lower RSS.

Figure 3: The outcome of clustering in K-means depends on the initial seeds. For seeds d2 and

d5, K-means converges to {{d1,d2,d3}, {d4,d5,d6}},a suboptimal clustering. For seeds d2 and

d3, it converges to {{d1,d2,d4,d5}, {d3,d6}},the global optimum for K = 2.

Effective heuristics for seed selection include (i) excluding outliers from the seed set;(ii)trying

out multiple starting points and choosing the clustering with lowest cost; and (iii) obtaining seeds

from another method such as hierarchical clustering. Because deterministic hierarchical

87

clustering methods are more predictable than K-means, a hierarchical clustering of a small

random sample of size iK (e.g., for i = 5 or i = 10) often provides good seeds. Other initialization

methods compute seeds that are not selected from the vectors to be clustered. A robust method

that works well for a large variety of document distributions is to select i (e.g., i = 10) random

vectors for each cluster and use their centroid as the seed for this cluster.

What is the time complexity of K-means? Most of the time is spent on computing vector

distances. One such operation costs #(M). The reassignment step computes KN distances, so its

overall complexity is #(KNM). In the re-computation step, each vector gets added to a centroid

once, so the complexity of this step is #(NM). For a fixed number of iterations I, the overall

complexity is therefore #(IKNM).Thus, K-means is linear in all relevant factors: iterations,

number of clusters, number of vectors, and dimensionality of the space. This means that K-means

is more efficient than the hierarchical algorithms. We had to fix the number of iterations I, which

can be tricky in practice. But in most cases, K-means quickly reaches either complete

convergence or a clustering that is close to convergence. In the latter case, a few documents

would switch membership if further iterations were computed, but this has a small effect on the

overall quality of the clustering.

There is one subtlety in the preceding argument. Even a linear algorithm can be quite slow if one

of the arguments of #(...) is large, and M usually is large. High dimensionality is not a problem

for computing the distance of two documents. Their vectors are sparse, so that only a small

fraction of the theoretically possible M component wise differences need to be computed.

Centroids, however, are dense; they pool all terms that occur in any of the documents of their

clusters. As a result, distance computations are time consuming in a naïve implementation of K-

means. But there are simple and effective heuristics for making centroid–document similarities as

fast to compute as document document similarities. Truncating centroids to the most significant k

terms (e.g., k = 1,000) hardly decreases cluster quality while achieving a significant speedup of

the reassignment step.

The same efficiency problem is addressed by K-medoids, a variant of K-means that computes

medoids instead of centroids as cluster centers. We define the medoid of a cluster as the

document vector that is closest to the medoid centroid. Since medoids are sparse document

vectors, distance computations are fast.

3. Working example using Weka

1. Under the Process tab in Experimenter window, press Open File;

2. Select <path_to_weka>/data/weather.arff or any other input data

3. The attributes and their possible values for the relation weather are as follows:

@attribute outlook {sunny, overcast, rainy}

@attribute temperature real

@attribute humidity real

88

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

4. Under the Cluster tab, tick off the “Use training set combo box” and press start.

5. The output of the clustering is as follows:

Number of iterations: 3

Within cluster sum of squared errors: 16.237456311387238

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1

(14) (9) (5)

==

outlook sunny sunny overcast

temperature 73.5714 75.8889 69.4

humidity 81.6429 84.1111 77.2

windy FALSE FALSE TRUE

play yes yes yes

Hereafter, we have 2 clusters. The fist cluster's centroid is

represented by the vector on the (0) column, the second cluster is

represented by the vector on the last column, and the mean of all the

data is presented on the first column.

4. Real world clustering examples

5.1 Clustering of wines

Being given a database containing categories of wine, described by their properties, we should be

able to create some clusters of wine categories, splitting them by major characteristics.

Type Alcohol Malic_acid Ash Ash_alcalinity Magnesium Total_phenols

A 14.23 1.71 2.43 15.6 127 2.8

A 13.2 1.78 2.14 11.2 100 2.65

A 13.16 2.36 2.67 18.6 101 2.8

A 14.37 1.95 2.5 16.8 113 3.85

A 13.24 2.59 2.87 21 118 2.8

A 14.2 1.76 2.45 15.2 112 3.27

A 14.39 1.87 2.45 14.6 96 2.5

A 14.06 2.15 2.61 17.6 121 2.6

A 14.83 1.64 2.17 14 97 2.8

A 13.86 1.35 2.27 16 98 2.98

A 14.1 2.16 2.3 18 105 2.95

A 14.12 1.48 2.32 16.8 95 2.2

A 13.75 1.73 2.41 16 89 2.6

89

http://www.resample.com/xlminer/help/kMClst/KMClust_ex.htm

5.2 Clustering of students in a group

Being given a database of students from a group, we should be able to create 4 clusters named :

weak, Normal, Smart, Outstanding based on their grades on different disciplines. After the

clustering is done, we can calculate the distance between a student and a cluster centroid

6. Assignments

1. Being given the following relation: Student(Name, gradeMath, gradeProgramming,

gradePhysics, gradeEnglish, gradeOverall), create an arff file containing at least 15 instances,

load it into Weka, and apply k-Means clustering to it. Also cluster the instances without

Weka, and compare the results. Pick different initial cluster centroids and compare the

results.

2. Also create an arff file according to the table with wine instances, load it into Weka and see

the results after applying k-Means clustering.

3. Develop a C program that clusters a planar set P of m=3k points into k triangles such that the

sum of all triangle circumferences is minimized.

4. Develop a C program that clusters m = nk points on a line into k clusters of equal size, i.e. a

balanced clustering, with a minimum sum of all distances between points of the same subset

consists of k disjoint segments of the line each containing n points.

http://www.resample.com/xlminer/help/kMClst/KMClust_ex.htm

90

Hierarchical Clustering

Purpose:

- Understand theoretical aspects and the most important algorithms used for Hierarchical

Clustering;

- See examples of the domains where hierarchical clustering are used in practice;

- Solve practical problems with hierarchical clustering.

1. Theoretical aspects: Assignments

1.1 What is Hierarchical clustering?

Hierarchical clustering is a method of cluster analysis which follows to build a hierarchy of clusters.

Hierarchical cluster analysis (or hierarchical clustering) is a general approach to cluster analysis, in

which the object is to group together objects or records that are "close" to one another.

A key component of the analysis is repeated calculation of distance measures between objects, and

between clusters once objects begin to be grouped into clusters. The outcome is represented

graphically as a dendrogram (the dendrogram is a graphical representation of the results of

hierarchical cluster analysis).

The initial data for the hierarchical cluster analysis of N objects is a set of N x (N – 1)/ 2 object-to-

object distances and a linkage function for computation of the cluster-to-cluster distances. A linkage

function is an essential feature for hierarchical cluster analysis. Its value is a measure of the "distance"

between two groups of objects (i.e. between two clusters).

The two main categories of methods for hierarchical cluster analysis are divisive methods and

agglomerative methods. In practice, the agglomerative methods are of wider use. On each step, the

pair of clusters with smallest cluster-to-cluster distance is fused into a single cluster.

1.2 Where Hierarchical Clustering is useful?

First example where hierarchical clustering would be useful is a study to predict the cost impact of

deregulation. To do the requisite analysis, economists would need to build a detailed cost model of the

various utilities. It would save a considerable amount of time and effort if we could cluster similar

types of utilities, build detailed cost models for just one typical utility in each cluster, then scale up

from these models to estimate results for all utilities.

Second example where hierarchical clustering would be useful is for automatic control of urban road

traffic with both adaptive traffic lights and variable message signs. Using hierarchical cluster analysis

we can specify the needed number of stationary road traffic sensors and their preferable locations

within a given road network.

Third example of using a hierarchical clustering is to take a file that contains nutritional information

for a set of breakfast cereals. We have the following information: the cereal name, cereal

manufacturer, type (hot or cold), number of calories per serving, grams of protein, grams of fat,

91

milligrams of sodium, grams of fiber, grams of carbohydrates, grams of sugars, milligrams of

potassium, typical percentage of the FDA's RDA of vitamins, the weight of one serving, the number

of cups in one serving. Hierarchical Clustering help to find which cereals are the best and worst in a

particular category.

1.3 Algorithms for hierarchical clustering:

The most common algorithms for hierarchical clustering are:

Agglomerative methods

An agglomerative hierarchical clustering procedure produces a series of partitions of the data, Pn, Pn-1,

… , P1. The first Pn consists of n single object 'clusters', the last P1, consists of single group containing

all n cases.

At each particular stage the method joins together the two clusters which are closest together (most

similar). (At the first stage, of course, this amounts to joining together the two objects that are closest

together, since at the initial stage each cluster has one object.)

Differences between methods arise because of the different ways of defining distance (or similarity)

between clusters. Several agglomerative techniques will now be described in detail.

Single linkage clustering

One of the simplest agglomerative hierarchical clustering method is single linkage, also known as the

nearest neighbor technique. The defining feature of the method is that distance between groups is

defined as the distance between the closest pair of objects, where only pairs consisting of one object

from each group are considered.

In the single linkage method, D(r,s) is computed as:

D(r,s) = Min { d(i,j) : Where object i is in cluster r and object j is cluster s }

Here the distance between every possible object pair (i,j) is computed, where object i is in cluster r

and object j is in cluster s. The minimum value of these distances is said to be the distance between

clusters r and s. In other words, the distance between two clusters is given by the value of the shortest

link between the clusters.

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are

merged.

This measure of inter-group distance is illustrated in the figure below:

92

Complete linkage clustering

The complete linkage, also called farthest neighbor, clustering method is the opposite of single

linkage. Distance between groups is now defined as the distance between the most distant pair of

objects, one from each group.

In the complete linkage method, D(r,s) is computed as

D(r,s) = Max { d(i,j) : Where object i is in cluster r and object j is cluster s }

Here the distance between every possible object pair (i,j) is computed, where object i is in cluster r

and object j is in cluster s and the maximum value of these distances is said to be the distance between

clusters r and s. In other words, the distance between two clusters is given by the value of the longest

link between the clusters.

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are

merged.

The measure is illustrated in the figure below:

Average linkage clustering

The distance between two clusters is defined as the average of distances between all pairs of objects,

where each pair is made up of one object from each group.

In the average linkage method, D(r,s) is computed as

D(r,s) = Trs / (Nr * Ns)

Where Trs is the sum of all pairwise distances between cluster r and cluster s. Nr and Ns

are the sizes of the clusters r and s respectively.

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is the minimum, are

merged.

The figure below illustrates average linkage clustering:

93

Average group linkage

With this method, groups once formed are represented by their mean values for each variable, that is,

their mean vector, and inter-group distance is now defined in terms of distance between two such

mean vectors.

In the average group linkage method, the two clusters r and s are merged such that, after merger, the

average pairwise distance within the newly formed cluster, is minimum. Suppose we label the new

cluster formed by merging clusters r and s, as t. Then D(r,s) , the distance between clusters r and s is

computed as

D(r,s) = Average { d(i,j) : Where observations i and j are in cluster t, the cluster formed by merging

clusters r and s }

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are

merged. In this case, those two clusters are merged such that the newly formed cluster, on average,

will have minimum pairwise distances between the points in it.

Cobweb

Cobweb generates hierarchical clustering, where clusters are described probabilistically. Below is an

example clustering of the weather data (weather.arff). The class attribute (play) is ignored (using the

ignore attributes panel) in order to allow later classes to clusters evaluation. Doing this automatically

through the "Classes to clusters" option does not make much sense for hierarchical clustering, because

of the large number of clusters. Sometimes we need to evaluate particular clusters or levels in the

clustering hierarchy.

How Weka represents the Cobweb clusters?

Below is a copy of the output window, showing the run time information and the structure of the

clustering tree.

Scheme: weka.clusterers.Cobweb -A 1.0 -C 0.234

Relation: weather

Instances: 14

Attributes: 5

outlook

temperature

humidity

windy

Ignored:

play

Test mode: evaluate on training data

Clustering model (full training set)

Number of merges: 2

Number of splits: 1

Number of clusters: 6

node 0 [14]

| node 1 [8]

94

| | leaf 2 [2]

| node 1 [8]

| | leaf 3 [3]

| node 1 [8]

| | leaf 4 [3]

node 0 [14]

| leaf 5 [6]

Evaluation on training set

Number of merges: 2

Number of splits: 1

Number of clusters: 6

node 0 [14]

| node 1 [8]

| | leaf 2 [2]

| node 1 [8]

| | leaf 3 [3]

| node 1 [8]

| | leaf 4 [3]

node 0 [14]

| leaf 5 [6]

Clustered Instances

2 2 (14%)

3 3 (21%)

4 3 (21%)

5 6 (43%)

Comments on the output above:

• node N or leaf N represents a subcluster, whose parent cluster is N.

• The clustering tree structure is shown as a horizontal tree, where subclusters are aligned at the same

column. For example, cluster 1 (referred to in node 1) has three subclusters 2 (leaf 2), 3 (leaf 3) and 4

(leaf 4).

• The root cluster is 0. Each line with node 0 defines a subcluster of the root.

• The number in square brackets after node N represents the number of instances in the parent cluster

N.

• Clusters with [1] at the end of the line are instances.

• For example, in the above structure cluster 1 has 8 instances and its subclusters 2, 3 and 4 have 2, 3

and 3 instances correspondingly.

• To view the clustering tree right click on the last line in the result list window and then select

Visualize tree.

To evaluate the Cobweb clustering using the classes to clusters approach we need to know the class

values of the instances, belonging to the clusters. We can get this information from Weka in the

following way: After Weka finishes (with the class attribute ignored), right click on the last line in the

result list window. Then choose Visualize cluster assignments - you get the Weka cluster visualize

95

window. Here you can view the clusters, for example by putting

Instance_number on X and Cluster on Y. Then click on Save and choose

a file name (*.arff). Weka saves the cluster assignments in an ARFF file.

Below is shown the file corresponding to the above Cobweb clustering.

2. Examples

First example:

A hierarchical clustering of distances in kilometres between some Italian cities. The method used is

single-linkage.

Input distance matrix (L = 0 for all the clusters):

 BA FI MI NA RM TO

BA 0 662 877 255 412 996

FI 662 0 295 468 268 400

MI 877 295 0 754 564 138

 NA 255 468 754 0 219 869

RM 412 268 564 219 0 669

TO 996 400 138 869 669 0

The nearest pair of cities is MI and TO, at distance 138. These are merged into a single cluster called

"MI/TO". The level of the new cluster is L(MI/TO) = 138 and the new sequence number is m = 1.

Then we compute the distance from this new compound object to all other objects. In single link

clustering the rule is that the distance from the compound object to another object is equal to the

shortest distance from any member of the cluster to the outside object. So the distance from "MI/TO"

to RM is chosen to be 564, which is the distance from MI to RM, and so on.

 After merging MI with TO, we obtain the following matrix:

 BA FI MI/TO NA RM

BA 0 662 877 255 412

FI 662 0 295 468 268

MI/TO 877 295 0 754 564

NA 255 468 754 0 219

RM 412 268 564 219 0

min d(i,j) = d(NA,RM) = 219 => merge NA and RM into a new cluster called NA/RM

L(NA/RM) = 219 ,m = 2

96

 BA FI MI/TO NA/RM

BA 0 662 877 255

FI 662 0 295 268

MI/TO 877 295 0 564

NA/RM 255 268 564 0

min d(i,j) = d(BA,NA/RM) = 255 => merge BA and NA/RM into a new cluster called

BA/NA/RM

L(BA/NA/RM) = 255

m = 3

 BA/NA/RM FI MI/TO

BA/NA/RM 0 268 564

FI 268 0 295

MI/TO 564 295 0

min d(i,j) = d(BA/NA/RM,FI) = 268 => merge BA/NA/RM and FI into a new cluster called

BA/FI/NA/RM

L(BA/FI/NA/RM) = 268

m = 4

 BA/FI/NA/RM MI/TO

BA/FI/NA/RM 0 295

MI/TO 295 0

Finally, we merge the last two clusters at level 295.

The process is summarized by the following hierarchical tree:

97

Second example:

Coordination Example:

Researchers performed a microarray experiment to generate a gene expression profile data set that

indicates relative levels of expression for each of these genes (> 12000) in murine muscle samples.

They measured expression levels at 27 time points to find genes that are biologically relevant to the

muscle regeneration process. They already know that MyoD is a gene that is the most relevant to

muscle regeneration. They run the hierarchical clustering with the data set, and identify a relevant

cluster that peaks at day 3. In the parallel coordinates view, they search MyoD using search-by-name

query, then make it a model pattern to perform a model-based query. They modify the model pattern

to emphasize the peak at day 3 and then adjust the similarity thresholds to get the search result that

mostly overlaps with the relevant day 3 cluster (Fig. 1 & Fig. 2). Finally, they confirm through other

biological experiments that 2 genes (Cdh15 and Stam) in the overlapped result set are novel

downstream targets of MyoD.

Fig. 1

Run a search-by-name query with MyoD to find 5 genes whose names contain MyoD, and the 5 genes

are projected onto the current clustering result visualization shown by triangles under the color

mosaic. Select a gene (myogenic differentiation 1) and make it a model pattern for next query.

Fig. 2

98

Modify the model pattern to emphasize the peak at day 3 (notice the bold red line), and run a model-

based query to find a small set of candidate genes. The updated search result will be highlighted in the

dendrogram view and other views.

3. Assignments

Problem 1:

We have the following data files:

cereal.txt (without 'vitamin' and 'rating' columns) : 77 x 9

here: http://www.cs.umd.edu/hcil/hce/examples/cereal/cereal.txt

cereal-updated.txt (with 'vitamin' and 'rating' columns) : 77 x 11

here: http://www.cs.umd.edu/hcil/hce/examples/cereal/cereal-updated.txt

The meaning of each column :

1. 1st column : Name of cereal

2. calories: calories per serving

3. protein: grams of protein

4. fat: grams of fat

5. sodium: milligrams of sodium

6. fiber: grams of dietary fiber

7. carbo: grams of complex carbohydrates

8. sugars: grams of sugars

9. potass: milligrams of potassium

10. vitamins: vitamins and minerals - 0, 25, or 100, indicating the typical percentage of FDA

recommended

11. shelf: display shelf (1, 2, or 3, counting from the floor)

12. rating: a rating of the cereals (calculated by Consumer Reports)

Requirements:

Use the given data files to find the following using WEKA:

1. Is a strong correlation between dietary fiber and potassium?

2. Are groups of cereals from which we can choose according to our preferences?

3. See other correlation between the data given in the files.

Problem 2:

We have the following data files:

netscan-08-2003.txt (activity log of newsgroups where name contains "windowsxp" for August

2003) : 91x10

here: http://www.cs.umd.edu/hcil/hce/examples/netscan/netscan-08-2003.txt

netscan-1year.txt (activity log of newsgroups where name contains "windowsxp"

for a year) : 104 x 10

here: http://www.cs.umd.edu/hcil/hce/examples/netscan/netscan-1year.txt

99

The meaning of each column :

1. 1st column : name of newsgroup

2. Posts : # of messages that were contributed to the newsgroup

3. Posters: : # of people who contributed at least on message to the newsgroup

4. PPRatio: the ratio of posters to posts

5. Returnees: # of people who contributed to the newsgroup in the current time

period and also contributed a message in the previous time period

6. Replies: # of people who contributed at least one message that was a reply to

another message

7. UnRMSGS: # of messages in the newsgroup that did not receive any reply in the

newsgroup

8. Avg.LineCT: average # of lines in each message

9. XPosts:# of messages that were shared with at least one other newsgroup

10. XPTgs:# of newsgroups that shared messages with the selected newsgroups

Requirements:

Use the given data files to find the following using WEKA:

1. What are the most active groups in terms of the number of people involved cluster together?

2. What are the most active communitie?

The COBWEB Conceptual Clustering Algorithm

The COBWEB algorithm was developed by machine learning researchers in the 1980s for clustering

objects in a object-attribute data set. The COBWEB algorithm yields a clustering dendrogram called

classification tree that characterizes each cluster with a probabilistic description.

Operation of the COBWEB algorithm

The COBWEB algorithm constructs a classification tree incrementally by inserting the objects into

the classification tree one by one. When inserting an object into the classification tree, the COBWEB

algorithm traverses the tree top-down starting from the root node.

At each node, the COBWEB algorithm considers 4 possible operations and select the one that yields

the highest CU function value:

• insert.

• create.

• merge.

• split.

The COBWEB algorithm operates based on the so-called category utility function (CU) that measures

clustering quality.

If we partition a set of objects into m clusters, then the CU of this particular partition is

Improvement in probability estimate because of

instance cluster assignment

100

𝐶 ∪ (𝐶1, 𝐶2, … , 𝐶𝑘) =
∑ Pr [𝐶𝑙] ∑ ∑ (Pr[𝑎𝑖 = 𝑣𝑖𝑗 ∣∣ 𝐶𝑙]

2
− 𝑃𝑟[𝑎𝑖 = 𝑣𝑖𝑗]2)𝑗𝑖𝑙

𝑘

If each instance in its own cluster:

Pr[𝑎𝑖 = 𝑣𝑖𝑗 ∣∣ 𝐶𝑙] = {
1 𝑣𝑖𝑗 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Category utility function becomes:

𝐶 ∪ (𝐶1, 𝐶2, … , 𝐶𝑘) =
𝑛 − ∑ ∑ Pr [𝑎𝑖 = 𝑣𝑖𝑗]2

𝑗𝑖

𝑘

Without k it would always be best for each instance to have its own cluster, overfitting!

Insertion means that the new object is inserted into one of the existing child nodes. The COBWEB

algorithm evaluates the respective CU function value of inserting the new object into each of the

existing child nodes and selects the one with the highest score.

The COBWEB algorithm also considers creating a new child node specifically for the new object.

The COBWEB algorithm considers merging the two existing child nodes with the highest and second

highest scores.

The COBWEB algorithm considers splitting the existing child node with the highest

score.

101

The COBWEB Algorithm

Input: The current node N in the concept hierarchy.

An unclassified (attribute-value) instance I.

Results: A concept hierarchy that classifies the instance.

Top-level call: Cobweb(Top-node, I).

Variables: C, P, Q, and R are nodes in the hierarchy. U, V, W, and X are clustering (partition)

scores.

Cobweb(N, I)

If N is a terminal node,

Then Create-new-terminals(N, I)

Incorporate(N,I).

Else Incorporate(N, I).

For each child C of node N,

Compute the score for placing I in C.

Let P be the node with the highest score W.

Let Q be the node with the second highest score.

Let X be the score for placing I in a new node R.

Let Y be the score for merging P and Q into one node.

Let Z be the score for splitting P into its children.

If W is the best score,

Then Cobweb(P, I) (place I in category P).

Else if X is the best score,

Then initialize R’s probabilities using I’s values

(place I by itself in the new category R).

Else if Y is the best score,

Then let O be Merge(P, R, N).

102

Cobweb(O, I).

Else if Z is the best score

Then Split(P, N).

Cobweb(N, I).

Auxiliary COBWEB Operations

Variables: N, O, P, and R are nodes in the hierarchy.

I is an unclassified instance.

A is a nominal attribute.

V is a value of an attribute.

Incorporate(N, I)

update the probability of category N.

For each attribute A in instance I,

For each value V of A,

Update the probability of V given category N.

Create-new-terminals(N, I)

Create a new child M of node N.

Initialize M’s probabilities to those for N.

Create a new child O of node N.

Initialize O’s probabilities using I’s value.

Merge(P, R, N)

Make O a new child of N.

Set O’s probabilities to be P and R’s average.

Remove P and R as children of node N.

Add P and R as children of node O.

Return O.

Split(P, N)

Remove the child P of node N.

Promote the children of P to be children of N.

An example of using COBWEB Algorithm:

We have the following data:

outlook Temp Humidity Windy Play

sunny Hot High FALSE No

Sunny Hot High TRUE No

Overcast Hot High FALSE Yes

Rainy Mild High FALSE Yes

Rainy Cool Normal FALSE Yes

103

Rainy Cool Normal TRUE No

Overcast Cool Normal TRUE Yes

Sunny Mild High FALSE No

Sunny Cool Normal FALSE Yes

Rainy Mild Normal FALSE Yes

Sunny Mild Normal TRUE Yes

Overcast Mild High TRUE Yes

Overcast Hot Normal FALSE Yes

Rainy Mild High TRUE No

Weather Data (without Play)

Label instances: a,b,….,n

Start by putting the first instance in its own cluster:

Add another instance in its own cluster:

Adding the Third Instance

Evaluate the category utility of adding the instance to one of the two clusters versus adding it as its

own cluster:

Adding Instance f

First instance not to get its own cluster:

Look at the instances:

104

Rainy Cool Normal FALSE

Rainy Cool Normal TRUE

Quite similar!

Add Instance g

Look at the instances:

E) Rainy Cool Normal FALSE

F) Rainy Cool Normal TRUE

G) Overcast Cool Normal TRUE

Add Instance h

Look at the instances:

Final Hierarchy

105

What next?

Dendogram - >clusters

106

Mining Frequent Itemsets – Apriori Algorithm

Purpose:

− key concepts in mining frequent itemsets

− understand the Apriori algorithm

− run Apriori in Weka GUI and in programatic way

1. Theoretical aspects

In data mining, association rule learning is a popular and well researched method for discovering

interesting relations between variables in large databases. Piatetsky-Shapiro describes analyzing and

presenting strong rules discovered in databases using different measures of interestingness. Based on

the concept of strong rules, Agrawal introduced association rules for discovering regularities between

products in large scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For

example, the rule {onion,potatoes}=>{burger} found in the sales data of a supermarket would indicate

that if a customer buys onions and potatoes together, he or she is likely to also buy burger. Such

information can be used as the basis for decisions about marketing activities such as, e.g., promotional

pricing or product placements. In addition to the above example from market basket analysis

association rules are employed today in many application areas including Web usage mining,

intrusion detection and bioinformatics.

In computer science and data mining, Apriori is a classic algorithm for learning association rules.

Apriori is designed to operate on databases containing transactions (for example, collections of items

bought by customers, or details of a website frequentation). Other algorithms are designed for finding

association rules in data having no transactions (Winepi and Minepi), or having no timestamps (DNA

sequencing).

Definition:

Following the original definition by Agrawal the problem of association rule mining is defined as:

Let I = {i1, i2, ..., in} be a set of n binary attributes called items. Let D = {t1, t2, ..., tn} be a set of

transactions called the database. Each transaction in D has a unique transaction ID and contains a

subset of the items in I. A rule is defined as an implication of the form 𝑿 → 𝒀 where X, Y ⊆ I

and 𝑿 ∩ 𝒀 = ∅. The sets of items (for short itemsets) X and Y are called antecedent (left-hand-side or

LHS) and consequent (right-hand-side or RHS) of the rule respectively.

To illustrate the concepts, we use a small example from the supermarket domain. The set of items is I

= {milk,bread,butter,beer} and a small database containing the items (1 codes presence and 0

absence of an item in a transaction) is shown in the table below. An example rule for the supermarket

could be {milk,bread}=>{butter} meaning that if milk and bread is bought, customers also buy butter.

107

Note: this example is extremely small. In practical applications, a rule needs a support of several

hundred transactions before it can be considered statistically significant, and datasets often contain

thousands or millions of transactions.

Transaction ID Milk Bread Butter Beer

1 1 1 0 0

2 0 1 1 0

3 0 0 0 1

4 1 1 1 0

5 0 1 0 0

6 1 0 0 0

7 0 1 1 1

8 1 1 1 1

9 0 1 0 1

10 1 1 0 0

11 1 0 0 0

12 0 0 0 1

13 1 1 1 0

14 1 0 1 0

15 1 1 1 1

Useful Concepts

To select interesting rules from the set of all possible rules, constraints on various measures of

significance and interest can be used. The best-known constraints are minimum thresholds on support

and

confidence.

Support

The support supp(X) of an itemset X is defined as the proportion of transactions in the data set which

contain the itemset.

supp(X)= no. of transactions which contain the itemset X / total no. of transactions

In the example database, the itemset {milk,bread,butter} has a support of 4 /15 = 0.26 since it occurs

in 26% of all transactions. To be even more explicit we can point out that 4 is the number of

transactions from the database which contain the itemset {milk,bread,butter} while 15 represents the

total number of transactions.

Confidence

The confidence of a rule is defined:

𝒄𝒐𝒏𝒇 (𝑿 → 𝒀) = 𝒔𝒖𝒑𝒑(𝑿 ∪ 𝒀)/𝒔𝒖𝒑𝒑(𝑿)

108

For the rule {milk,bread}=>{butter} we have the following confidence:

supp({milk,bread,butter}) / supp({milk,bread}) = 0.26 / 0.4 = 0.65

This means that for 65% of the transactions containing milk and bread the rule is correct. Confidence

can be interpreted as an estimate of the probability P(Y | X), the probability of finding the RHS of the

rule in transactions under the condition that these transactions also contain the LHS.

Lift

The lift of a rule is defined as:

𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝(𝑌) ∗ 𝑠𝑢𝑝𝑝(𝑋)

The rule {milk,bread}=>{butter} has the following lift:

supp({milk,bread,butter}) / supp({butter}) x supp({milk,bread})= 0.26/0.46 x 0.4= 1.4

Conviction

The conviction of a rule is defined as:

𝑐𝑜𝑛𝑣(𝑋 → 𝑌) =
1 − 𝑠𝑢𝑝𝑝(𝑌)

1 − 𝑐𝑜𝑛𝑓(𝑋 → 𝑌)

The rule {milk,bread}=>{butter} has the following conviction:

1 – supp({butter})/ 1- conf({milk,bread}=>{butter}) = 1-0.46/1-0.65 = 1.54

The conviction of the rule X=>Y can be interpreted as the ratio of the expected frequency that X

occurs without Y (that is to say, the frequency that the rule makes an incorrect prediction) if X

and Y were independent divided by the observed frequency of incorrect predictions.

In this example, the conviction value of 1.54 shows that the rule {milk,bread}=>{butter} would

be incorrect 54% more often (1.54 times as often) if the association between X and Y was purely

random chance.

2. Apriori algorithm

General Process

Association rule generation is usually split up into two separate steps:

1. First, minimum support is applied to find all frequent itemsets in a database.

2. Second, these frequent itemsets and the minimum confidence constraint are used to form

rules.

While the second step is straight forward, the first step needs more attention.

Finding all frequent itemsets in a database is difficult since it involves searching all possible itemsets

(item combinations). The set of possible itemsets is the power set over I and has size 2
n
 − 1 (excluding

the empty set which is not a valid itemset). Although the size of the powerset grows exponentially in

the number of items n in I, efficient search is possible using the downward-closure property of

support (also called anti-monotonicity) which guarantees that for a frequent itemset, all its subsets are

109

also frequent and thus for an infrequent itemset, all its supersets must also be infrequent. Exploiting

this property, efficient algorithms (e.g., Apriori and Eclat) can find all frequent itemsets.

Apriori Algorithm Pseudocode

procedure Apriori (T, minSupport) { //T is the database and minSupport is the minimum support

L1= {frequent items};

for (k= 2; Lk-1 !=∅; k++) {

Ck= candidates generated from Lk-1-1

//that iscartesian product Lk-1 x Lk-1 and eliminating any k-1 size itemset that is not

//frequent

for each transaction t in database do{

#increment the count of all candidates in Ck that are contained in t

Lk = candidates in Ck with minSupport

}//end for each

}//end for

return UkLk;

}

As is common in association rule mining, given a set of itemsets (for instance, sets of retail

transactions, each listing individual items purchased), the algorithm attempts to find subsets which are

common to at least a minimum number C of the itemsets. Apriori uses a "bottom up" approach, where

frequent subsets are extended one item at a time (a step known as candidate generation), and groups

of candidates are tested against the data. The algorithm terminates when no further successful

extensions are found.

Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It

generates candidate item sets of length k from item sets of length k − 1. Then it prunes the candidates

which have an infrequent sub pattern. According to the downward closure lemma, the candidate set

contains all frequent k-length item sets. After that, it scans the transaction database to determine

frequent item sets among the candidates.

Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs, which

have spawned other algorithms. Candidate generation generates large numbers of subsets (the

algorithm attempts to load up the candidate set with as many as possible before each scan). Bottom-up

subset exploration (essentially a breadth-first traversal of the subset lattice) finds any maximal subset

S only after all 2
|S|

 − 1 of its proper subsets.

3. Sample usage of Apriori algorithm

A large supermarket tracks sales data by Stock-keeping unit (SKU) for each item, and thus is able to

know what items are typically purchased together. Apriori is a moderately efficient way to build a list

110

of frequent purchased item pairs from this data. Let the database of transactions consist of the sets

{1,2,3,4}, {1,2,3,4,5}, {2,3,4}, {2,3,5}, {1,2,4}, {1,3,4}, {2,3,4,5}, {1,3,4,5}, {3,4,5}, {1,2,3,5}.

Each number corresponds to a product such as "butter" or "water". The first step of Apriori is to count

up the frequencies, called the supports, of each member item separately:

Item Support

1 6

2 7

3 9

4 8

5 6

We can define a minimum support level to qualify as "frequent," which depends on the context. For

this case, let min support = 4. Therefore, all are frequent. The next step is to generate a list of all 2-

pairs of the frequent items. Had any of the above items not been frequent, they wouldn't have been

included as a possible member of possible 2-item pairs. In this way, Apriori prunes the tree of all

possible sets. In next step we again select only these items (now 2-pairs are items) which are frequent

(the pairs written in bold text):

Item Support

{1,2} 4

{1,3} 5

{1,4} 5

{1,5} 3

{2,3} 6

{2,4} 5

{2,5} 4

{3,4} 7

{3,5} 6

{4,5} 4

We generate the list of all 3-triples of the frequent items (by connecting frequent pair with frequent

single item).

Item Support

{1,3,4} 4

{2,3,4} 4

{2,3,5} 4

{3,4,5} 4

111

The algorithm will end here because the pair {2, 3, 4, 5} generated at the next step does not have the

desired support.

We will now apply the same algorithm on the same set of data considering that the min support is 5.

We get the following results:

Step 1:

Item Support

1 6

2 7

3 9

4 8

5 6

Step 2:

Item Support

{1,2} 4

{1,3} 5

{1,4} 5

{1,5} 3

{2,3} 6

{2,4} 5

{2,5} 4

{3,4} 7

{3,5} 6

{4,5} 4

The algorithm ends here because none of the 3-triples generated at Step 3 have de desired support.

4. Sample usage of Apriori in Weka

For our test we shall consider 15 students that have attended lectures of the Algorithms and Data

Structures course. Each student has attended specific lectures. The ARFF file presented bellow

contains information regarding each student’s attendance.

@relation test_studenti

@attribute Arbori_binari_de_cautare {TRUE, FALSE}

@attribute Arbori_optimali {TRUE, FALSE}

112

@attribute Arbori_echilibrati_in_inaltime {TRUE, FALSE}

@attribute Arbori_Splay {TRUE, FALSE}

@attribute Arbori_rosu_negru {TRUE, FALSE}

@attribute Arbori_2_3 {TRUE, FALSE}

@attribute Arbori_B {TRUE, FALSE}

@attribute Arbori_TRIE {TRUE, FALSE}

@attribute Sortare_topologica {TRUE, FALSE}

@attribute Algoritmul_Dijkstra {TRUE, FALSE}

@data

TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,FALSE

TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE

FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE

FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE

TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE

TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE

FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE

TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE

FALSE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE

TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE

FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE

TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE

FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE

TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE

TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE

Using the Apriori Algorithm we want to find the association rules that have minSupport=50% and

minimum confidence=50%. We will do this using WEKA GUI.

After we launch the WEKA application and open the TestStudenti.arff file, we move to the Associate

tab and we set up the following configuration:

113

After the algorithm is finished, we get the following results:

If we look at the first rule we can see that the students who don’t attend the Sortare topologica lecture

have a tendency to attend the Arbori TRIE lecture. The confidence of this rule is 100% so it is very

believable. Using the same logic we can interpret all the other rules that the algorithm has revealed.

114

The same results presented above can be obtained by implementing the WEKA Apriori Algorithm in

your own Java code. A simple Java program that takes the TestStudenti.arff file as input, configures

the Apriori class and displays the results of the Apriori algorithm is presented below:

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import weka.associations.Apriori;

import weka.core.Instances;

public class Main

{

public static void main(String[] args)

{

Instances data = null;

try{

BufferedReader reader = new BufferedReader(new

 FileReader("...\\TestStudenti.arff"));

data = new Instances(reader);

reader.close();

data.setClassIndex(data.numAttributes() - 1);

}

catch(IOException e) {

e.printStackTrace();

}

double deltaValue = 0.05;

double lowerBoundMinSupportValue = 0.1;

double minMetricValue = 0.5;

int numRulesValue = 20;

double upperBoundMinSupportValue = 1.0;

String resultapriori;

Apriori apriori = new Apriori();

apriori.setDelta(deltaValue);

apriori.setLowerBoundMinSupport(lowerBoundMinSupportValue);

apriori.setNumRules(numRulesValue);

apriori.setUpperBoundMinSupport(upperBoundMinSupportValue);

115

apriori.setMinMetric(minMetricValue);

try

{

apriori.buildAssociations(data);

}

catch (Exception e) {

e.printStackTrace();

}

resultapriori = apriori.toString();

System.out.println(resultapriori);

}

}

5. Domains where Apriori is used

Application of the Apriori algorithm for adverse drug reaction detection

The objective is to use the Apriori association analysis algorithm for the detection of adverse drug

reactions (ADR) in health care data. The Apriori algorithm is used to perform association analysis on

the characteristics of patients, the drugs they are taking, their primary diagnosis, co-morbid

conditions, and the ADRs or adverse events (AE) they experience. This analysis produces association

rules that indicate what combinations of medications and patient characteristics lead to ADRs.

Application of Apriori Algorithm in Oracle Bone Inscription Explication

Oracle Bone Inscription (OBI) is one of the oldest writing in the world, but of all 6000 words found

till now there are only about 1500 words that can be explicated explicitly. So explication for OBI is a

key and open problem in this field. Exploring the correlation between the OBI words by Association

Rules algorithm can aid in the research of explication for OBI. Firstly the OBI data extracted from the

OBI corpus are preprocessed; with these processed data as input for Apriori algorithm we get the

frequent itemset. And combined by the interestingness measurement the strong association rules

between OBI words are produced. Experimental results on the OBI corpus demonstrate that this

proposed method is feasible and effective in finding semantic correlation for OBI.

