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ALGORITHMS FOR INFORMATION ORGANIZATION AND 

RETRIEVAL INTRODUCTION 

1. Purpose: 

 Short introduction to Information Retrieval. 

 The importance of Information Retrieval Systems. 

 Short presentation of most common algorithms used for Information Retrieval and 

Data Mining. 

 

2. Information Retrieval Introduction 

2.1 What is Information Retrieval? 

Information retrieval (IR) - finding material (usually documents) of an unstructured nature 

(usually text) that satisfies an information need from within large collections (usually stored 

on computers). 

Information retrieval is a problem-oriented discipline, concerned with the problem of the 

effective and efficient transfer of desired information between human generator and human 

user 

In other words: 

• The indexing and retrieval of textual documents. 

• Concerned firstly with retrieving relevant documents to a query. 

• Concerned secondly with retrieving from large sets of documents efficiently. 

 

2.2 Why IR? – A Simple Example. 

Suppose there is a store of documents and a person (user of the store) formulates a question 

(request or query) to which the answer is a set of documents satisfying the information need 

expressed by his question. 

Solution: User can read all the documents in the store, retain the relevant documents and 

discard all the others – Perfect Retrieval… NOT POSSIBLE !!! 

Alternative: Use a High Speed Computer to read entire document collection and extract the 

relevant documents. 

Goal = find documents relevant to an information need from a large document set. 
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2.3 Role: 

Three main areas of Research: 

• Content Analysis: Describing the contents of documents in a form suitable for 

computer processing; 

• Information Structures: Exploiting relationships between documents to improve the 

efficiency and effectiveness of retrieval strategies; 

• Evaluation: the measurement of the effectiveness of retrieval. 

o Precision - The ability to retrieve top-ranked documents that are mostly 

relevant. 

o Recall - The ability of the search to find all of the relevant items in the corpus. 

 

3. Information Retrieval Systems 

A document based IR system typically consists of three main subsystems: document 

representation, representation of users' requirements (queries), and the algorithms used to 

match user requirements (queries) with document representations. The basic architecture is as 

shown in figure 1. 

 

A document collection consists of many documents containing information about various 

subjects or topics of interests. Document contents are transformed into a document 

representation (either manually or automatically). Document representations are done in a 

way such that matching these with queries is easy. Another consideration in document 

representation is that such a representation should correctly reflect the author's intention. The 
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primary concern in representation is how to select proper index terms. Typically 

representation proceeds by extracting keywords that are considered as content identifiers and 

organizing them into a given format. 

Queries transform the user's information need into a form that correctly represents the user's 

underlying information requirement and is suitable for the matching process. Query 

formatting depends on the underlying model of retrieval used. The user rates documents 

presented as either relevant or non-relevant to his/her information need. The basic problem 

facing any IR system is how to retrieve only the relevant documents for the user’ s 

information requirements, while not retrieving non- relevant ones. 

Various system performance criteria like precision and recall have been used to gauge the 

effectiveness of the system in meeting users’ information requirements. 

Recall is the ratio of the number of relevant retrieved documents to the total number of 

relevant documents available in the document collection. Precision is defined as the ratio of 

the number of relevant retrieved documents to the total number of retrieved documents. 

Relevance feedback is typically used by the system (dotted arrows in figure 1) to improve 

document descriptions or queries, with the expectation that the overall performance of the 

system will improve after such a feedback. 

 

4. Areas of IR application 

Information retrieval (IR) systems were originally developed to help manage the huge 

scientific literature that has developed since the 1940s. Many university, corporate, and 

public libraries now use IR systems to provide access to books, journals, and other 

documents. Commercial IR systems offer databases containing millions of documents in 

myriad subject areas. Dictionary and encyclopaedia databases are now widely available for 

PCs. IR has been found useful in such disparate areas as office automation and software 

engineering. Indeed, any discipline that relies on documents to do its work could potentially 

use and benefit from IR. Information retrieval is used today in many applications. Is used to 

search for documents, content thereof, document metadata within traditional relational 

databases or internet documents more conveniently and decrease work to access information. 

Retrieved documents should be relevant to a user’s information need. Obvious examples 

include search engines as Google, Yahoo or Microsoft Live Search. Many problems in 

information retrieval can be viewed as a prediction problem, i.e. to predict ranking scores or 

ratings of web pages, documents, music songs etc. and learning the information desires and 

interests of users. 



 

7 
 

 

4.1 General applications of information retrieval: 

4.1.1 Digital Library 

A digital library is a library in which collections are stored in digital formats (as opposed to 

print, microform, or other media) and accessible by computers. The digital content may be 

stored locally, or accessed remotely via computer networks. A digital library is a type of 

information retrieval system. 

Many academic libraries are actively involved in building institutional repositories of the 

institution's books, papers, theses, and other works which can be digitized or were 'born 

digital'. 

Many of these repositories are made available to the general public with few restrictions, in 

accordance with the goals of open access, in contrast to the publication of research in 

commercial journals, where the publishers often limit access rights. Institutional, truly free, 

and corporate repositories are sometimes referred to as digital libraries. 

4.1.2 Recommender systems 

Recommender systems or recommendation engines form or work from a specific type of 

information filtering system technique that attempts to recommend information items (films, 

television, video on demand, music, books, news, images, web pages, etc) that are likely to be 

of interest to the user. Typically, a recommender system compares a user profile to some 

reference characteristics, and seeks to predict the 'rating' that a user would give to an item 

they had not yet considered. These characteristics may be from the information item (the 

content-based approach) or the user's social environment (the collaborative filtering 

approach). Collaborative filtering is concerned with making recommendation about 

information items (movies, music, books, news, web pages) to users. Based on the “Word of 

Mouth” phenomenon, it recommends items that like-minded people liked in the past. 

Although collaborative filtering is an effective way to alleviate information overload and has 

been widely adopted in e-commerce websites, collecting user preference data is not trivial 

because it may raise serious concerns about the privacy of individuals. 

4.1.3 Search Engines 

A search engine is one of the most the practical applications of information retrieval 

techniques to large scale text collections. Web search engines are best known examples, but 

many others searches exist, like: Desktop search, Enterprise search, Federated search, Mobile 

search, and Social search. 
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A web search engine is designed to search for information on the World Wide Web. The 

search results are usually presented in a list of results and are commonly called hits. The 

information may consist of web pages, images, information and other types of files. Some 

search engines also mine data available in databases or open directories. Unlike Web 

directories, which are maintained by human editors, search engines operate algorithmically or 

are a mixture of algorithmic and human input. 

Relevance feedback is an important issue of information retrieval found in web searching. 

Reliability of information is a pre-requisite to get most from research information found onto 

the web. A frequently encountered issue is that search terms are ambiguous and thus 

documents from a different non-relevant context are retrieved or you may not know which 

terms describe your problem properly, especially if you are a non-expert user in this 

particular domain. 

The novel idea of relevance feedback allows users to rate retrieved documents as relevant or 

less relevant and thus help other users to find documents more quickly. These ideas where 

adopted from image retrieval. Images are hard to describe using words. 

4.1.4 Media search 

An image retrieval system is a computer system for browsing, searching and retrieving 

images from a large database of digital images. Most traditional and common methods of 

image retrieval utilize some method of adding metadata such as captioning, keywords, or 

descriptions to the images so that retrieval can be performed over the annotation words. 

Manual image annotation is time-consuming, laborious and expensive; to address this, there 

has been a large amount of research done on automatic image annotation. Additionally, the 

increase in social web applications and the semantic web have inspired the development of 

several web-based image annotation tools. 

5. IR Algorithms 

It is hard to classify IR algorithms, and to draw a line between each type of application. 

However, we can identify three main types of algorithms, which are described below. There 

are other algorithms used in IR that do not fall within our description, for example, user 

interface algorithms. The reason that they cannot be considered as IR algorithms is because 

they are inherent to any computer application. We distinguish three main classes of 

algorithms. These are retrieval, indexing, and filtering algorithms. 
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5.1 Retrieval Algorithms 

The main class of algorithms in IR is retrieval algorithms, that is, to extract information from 

a textual database. We can distinguish two types of retrieval algorithms, according to how 

much extra memory we need: 

 Sequential scanning of the text: extra memory is in the worst case a function of the 

query size, and not of the database size. On the other hand, the running time is at least 

proportional to the size of the text, for example, string searching. 

 Indexed text: an "index" of the text is available, and can be used to speed up the 

search. The index size is usually proportional to the database size, and the search time 

is sub-linear on the size of the text, for example, inverted files and signature files. 

Formally, we can describe a generic searching problem as follows: Given a string t (the text), 

a regular expression q (the query), and information (optionally) obtained by pre-processing 

the pattern and/or the text, the problem consists of finding whether t ϵΣ*q ( q for short) and 

obtaining some or all of the following information: 

1. The location where an occurrence (or specifically the first, the longest, etc.) of q 

exists. Formally, if t ϵΣ*q find a position m >=0 such that t ϵ Σ (from 0 to m)q*. For 

example, the first occurrence is defined as the least m that fulfills this condition. 

2. The number of occurrences of the pattern in the text. Formally, the number of all 

possible values of m in the previous category. 

3. All the locations where the pattern occurs (the set of all possible values of m). 

In general, the complexities of these problems are different. 

The efficiency of retrieval algorithms is very important, because we expect them to solve on-

line queries with a short answer time. This need has triggered the implementation of retrieval 

algorithms in many different ways: by hardware, by parallel machines, and so on. 

5.2 Filtering Algorithms 

This class of algorithms is such that the text is the input and a processed or filtered version of 

the text is the output. This is a typical transformation in IR, for example to reduce the size of 

a text, and/or standardize it to simplify searching. 

The most common filtering/processing operations are: 

• Common words removed using a list of stop words; 

• Uppercase letters transformed to lowercase letters; 

• Special symbols removed and sequences of multiple spaces reduced to one space; 

• Numbers and dates transformed to a standard format; 

• Word stemming (removing suffixes and/or prefixes); 
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• Automatic keyword extraction; 

• Word ranking. 

Unfortunately, these filtering operations may also have some disadvantages. Any query, 

before consulting the database, must be filtered as is the text; and, it is not possible to search 

for common words, special symbols, or uppercase letters, nor to distinguish text fragments 

that have been mapped to the same internal form. 

5.3 Indexing Algorithms 

The usual meaning of indexing is to build a data structure that will allow quick searching of 

the text, as we mentioned previously. There are many classes of indices, based on different 

retrieval approaches. For example, we have inverted files, signature files, tries, and so on. 

Almost all types of indices are based on some kind of tree or hashing. Perhaps the main 

exceptions are clustered data structures (this kind of indexing is called clustering), which is 

covered in further laboratories, and the Direct Acyclic Word Graph (DAWG) of the text, 

which represents all possible sub-words of the text using a linear amount of space and is 

based on finite automata theory. 

Usually, before indexing, the text is filtered. Figure 2 shows the complete process for the text. 

 

Figure 2: Text pre-processing 

The pre-processing time needed to build the index is amortized by using it in searches. For 

example, if building the index requires O (n log n) time, we would expect to query the 

database at least O(n) times to amortize the pre-processing cost. In that case, we add O(log n) 

pre-processing time to the total query time (that may also be logarithmic). 

 

6. Data Mining 

6.1 Introduction 

A topic related to Information Retrieval is Data Mining. 

Data mining is the process of extracting patterns from data. Data mining is becoming an 

increasingly important tool to transform this data into information. It is commonly used in a 
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wide range of profiling practices, such as marketing, surveillance, fraud detection and 

scientific discovery. 

Data mining can be used to uncover patterns in data but is often carried out only on samples 

of data. The mining process will be ineffective if the samples are not a good representation of 

the larger body of data. Data mining cannot discover patterns that may be present in the 

larger body of data if those patterns are not present in the sample being "mined". 

Inability to find patterns may become a cause for some disputes between customers and 

service providers. Therefore data mining is not foolproof but may be useful if sufficiently 

representative data samples are collected. The discovery of a particular pattern in a particular 

set of data does not necessarily mean that a pattern is found elsewhere in the larger data from 

which that sample was drawn. An important part of the process is the verification and 

validation of patterns on other samples of data. 

Data mining commonly involves the following classes of tasks: 

• Classification - Arranges the data into predefined groups. For example, an email 

program might attempt to classify an email as legitimate or spam. Common 

algorithms include decision tree learning, nearest neighbour, naive Bayesian 

classification and neural networks. 

• Clustering - Is like classification but the groups are not predefined, so the algorithm 

will try to group similar items together. 

• Regression - Attempts to find a function which models the data with the least error. 

 

6.2 Regression 

Regression is the oldest and most well-known statistical technique that the data mining 

community utilizes. Basically, regression takes a numerical dataset and develops a 

mathematical formula that fits the data. When you're ready to use the results to predict future 

behaviour, you simply take your new data, plug it into the developed formula and you've got 

a prediction! The major limitation of this technique is that it only works well with continuous 

quantitative data (like weight, speed or age). If you're working with categorical data where 

order is not significant (like colour, name or gender) you're better off choosing another 

technique. 

6.2.1 Regression algorithms: 

• Linear regression involves finding the “best” line to fit two attributes (or variables), so 

that one attribute can be used to predict the other. 
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• Multiple linear regression is an extension of linear regression, where more than two 

attributes are involved and the data are fit to a multidimensional surface. 

 

6.3 Classification 

Classification is one of the major data mining tasks. Although this task is accomplished by 

generating a predictive model of data, interpreting the model frequently provides information 

for discriminating labelled classes in data 

 

6.3.1 Classification Algorithms 

Brief overview of basic classification algorithms 

The goal of classification is to build a set of models that can correctly predict the class of the 

different objects. The input to these methods is a set of objects (i.e., training data), the classes 

which these objects belong to (i.e., dependent variables), and a set of variables describing 

different characteristics of the objects (i.e., independent variables). Once such a predictive 

model is built, it can be used to predict the class of the objects for which class information is 

not known a priori. The key advantage of supervised learning methods over unsupervised 

methods (for example, clustering) is that by having an explicit knowledge of the classes the 

different objects belong to, these algorithms can perform an effective feature selection if that 

leads to better prediction accuracy. 

The followings are brief overview on some classification algorithms that has been used in 

data mining and machine learning area and used as base algorithms in this course. 

 

6.3.1.1 k-Nearest Neighbour (KNN) Algorithm 

KNN classifier is an instance-based learning algorithm that is based on a distance function for 

pairs of observations, such as the Euclidean distance or Cosine. In this classification 

paradigm, k nearest neighbours of a training data are computed first. Then the similarities of 

one sample from testing data to the k nearest neighbours are aggregated according to the class 

of the neighbors, and the testing sample is assigned to the most similar class. One of 

advantages of KNN is that it is well suited for multi-modal classes as its classification 

decision is based on a small neighborhood of similar objects (i.e., the major class). So, even if 

the target class is multimodal (i.e., consists of objects whose independent variables have 

different characteristics for different subsets), it can still lead to good accuracy. A major 

drawback of the similarity measure used in KNN is that it uses all features equally in 
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computing similarities. This can lead to poor similarity measures and classification errors, 

when only a small subset of the features is useful for classification. 

 

6.3.1.2 Naive Bayesian (NB) Algorithm 

NB algorithm has been widely used for document classification, and shown to produce very 

good performance. The basic idea is to use the joint probabilities of words and categories to 

estimate the probabilities of categories given a document. NB algorithm computes the 

posterior probability that the document belongs to different classes and assigns it to the class 

with the highest posterior probability. The posterior probability of class is computed using 

Bayes rule and the testing sample is assigned to the class with the highest posterior 

probability. The naive part of NB algorithm is the assumption of word independence that the 

conditional probability of a word given a category is assumed to be independent from the 

conditional probabilities of other words given that category. There are two versions of NB 

algorithm. One is the multi-variate Bernoulli event model that only takes into account the 

presence or absence of a particular term, so it doesn't capture the number of occurrence of 

each word. The other model is the multinomial model that captures the word frequency 

information in documents. 

 

6.3.1.3 Concept Vector-based (CB) Algorithm 

In CB classification algorithm, the length of each vector is normalized so that it is of unit 

length. The idea behind the concept-based classification is extremely simple. For each set of 

documents belonging to the same class, we compute its concept vector by summing up all 

vectors in the class and normalize it by its 2-norm. If there are c classes in the training data 

set, this leads to c concept vectors, where each concept vector for each class. The class of a 

new sample is determined as follow. First, for a given testing document, which was already 

normalized by 2-norm so that it has unit length, we compute cosine similarity between this 

given testing document to all k concept vectors. Then, based on these similarities, we assign a 

class label so that it corresponds to the most similar concept vector's label. One of the 

advantages of the CB classification algorithm is that it summarizes the characteristics of each 

class, in the form of concept vector. So, the advantage of the summarization performed by the 

concept vectors is that it combines multiple prevalent features together, even if these features 

are not simultaneously present in a single document. That is, if we look at the prominent 

dimensions of the concept vector (i.e., highest weight terms), these will correspond to words 

that appear frequently in the class, but not necessarily all in the same set of documents. This 
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is particularly important for high dimensional and sparse data sets for which the coverage of 

any individual feature is often quite low. 

 

6.3.1.4 Decision Tree Induction 

Decision tree induction is the learning of decision trees from class-labelled training tuples. A 

decision tree is a flowchart-like tree structure, where each internal node (non leaf node) 

denotes a test on an attribute, each branch represents an outcome of the test, and each leaf 

node (or terminal node) holds a class label. The top most node in a tree is the root node. 

 

 

 “How are decision trees used for classification?” Given a tuple, X, for which the associated 

class label is unknown, the attribute values of the tuple are tested against the decision tree. A 

path is traced from the root to a leaf node, which holds the class prediction for that tuple. 

 

Decision trees can easily be converted to classification rules. 

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers 

does not require any domain knowledge or parameter setting, and therefore is appropriate for 

exploratory knowledge discovery. Decision trees can handle high dimensional data. Their 

representation of acquired knowledge in tree form is intuitive and generally easy to assimilate 

by humans. The learning and classification steps of decision tree induction are simple and 

fast. In general, decision tree classifiers have good accuracy. However, successful use may 

depend on the data at hand. Decision tree induction algorithms have been used for 

classification in many application areas, such as medicine, manufacturing and production, 

financial analysis, astronomy, and molecular biology. 
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6.4 Clustering 

Clustering can be considered the most important unsupervised learning problem; so, as every 

other problem of this kind, it deals with finding a structure in a collection of unlabeled data. 

A loose definition of clustering could be “the process of organizing objects into groups whose 

members are similar in some way”. A cluster is therefore a collection of objects which are 

“similar” between them and are “dissimilar” to the objects belonging to other clusters. We 

can show this with a simple graphical example: 

 

6.4.1 K-means clustering: 

The aim of K-means (or clustering) is: We want to group the items into k clusters such that 

all items in same cluster are as similar to each other as possible. And items not in same 

cluster are as different as possible. We use the distance measures to calculate similarity and 

dissimilarity. One of the important concept in K-means is that of centroid. Each cluster has a 

centroid. You can consider it as the point that is most representative of the cluster. 

Equivalently, centroid is point that is the "center" of a cluster. 

Algorithm: 

1. Randomly choose k items and make them as initial centroids. 

2. For each point, find the nearest centroid and assign the point to the cluster associated 

with the nearest centroid. 

3. Update the centroid of each cluster based on the items in that cluster. Typically, the 

new centroid will be the average of all points in the cluster. 

4. Repeats steps 2 and 3, till no point switches clusters. 
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5. As you can see, the algorithm is extremely simple. After some iterations, we will get 

k-clusters within which each points are similar. 

 

6.4.2 Hierarchical Clustering Algorithms 

Given a set of N items to be clustered, and an N*N distance (or similarity) matrix, the basic 

process of hierarchical clustering (defined by S.C. Johnson in 1967) is this: 

1. Start by assigning each item to a cluster, so that if you have N items, you now have N 

clusters, each containing just one item. Let the distances (similarities) between the 

clusters the same as the distances (similarities) between the items they contain. 

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so 

that now you have one cluster less. 

3. Compute distances (similarities) between the new cluster and each of the old clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. (*) 

 

References: 
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 DESCRIPTION OF WEKA 

-A JAVA-IMPLEMENTED MACHINE LEARNING TOOL 

Purpose: 

- Install and run WEKA 

- Experiment environment in GUI version and in command line version 

 

1. Theoretical Aspects 

1.1. What is WEKA? 

WEKA is a collection of machine learning algorithms for data mining tasks. The algorithms can either 

be applied directly to a dataset or called from your own Java code. WEKA contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization. It is also well-

suited for developing new machine learning schemes. WEKA is used for research, education, and 

applications. The tool gathers a comprehensive set of data pre-processing tools, learning algorithms 

and evaluation methods, graphical user interfaces (incl. data visualization) and environment for 

comparing learning algorithms. 

WEKA is open source software issued under the GNU General Public License. "WEKA" stands for 

the Waikato Environment for Knowledge Analysis, which was developed at the University of 

Waikato in New Zealand. WEKA is extensible and has become a collection of machine learning 

algorithms for solving real-world data mining problems. It is written in Java and runs on almost every 

platform. 

WEKA is easy to use and to be applied at several different levels. You can access the WEKA class 

library from your own Java program, and implement new machine learning algorithms. There are 

three major implemented schemes in WEKA. (1) Implemented schemes for classification. (2) 

Implemented schemes for numeric prediction. (3) Implemented "meta-schemes”. Besides actual 

learning schemes, WEKA also contains a large variety of tools that can be used for pre-processing 

datasets, so that you can focus on your algorithm without considering too much details as reading the 

data from files, implementing filtering algorithm and providing code to evaluate the results. 

 

Some practical applications that use WEKA: 

Acronym identification 

This addresses the task of finding acronym-definition pairs in text. Most of the previous work on the 

topic is about systems that involve manually generated rules or regular expressions. In this manual, 

we present a supervised learning approach to the acronym identification task. Our approach reduces 

the search space of the supervised learning system by putting some weak constraints on the kinds of 

acronym-definition pairs that can be identified. We obtain results comparable to hand-crafted systems 



 

18 
 

that use stronger constraints. We describe our method for reducing the search space, the features used 

by our supervised learning system, and our experiments with various learning schemes. 

Gene selection from microarray data for cancer classification 

A DNA microarray can track the expression levels of thousands of genes simultaneously. Previous 

research has demonstrated that this technology can be useful in the classification of cancers. Cancer 

microarray data normally contains a small number of samples which have a large number of gene 

expression levels as features. To select relevant genes involved in different types of cancer remains a 

challenge. In order to extract useful gene information from cancer microarray data and reduce 

dimensionality, feature selection algorithms were systematically investigated in this study. 

Using a correlation-based feature selector combined with machine learning algorithms such as 

decision trees, nave Bayes and support vector machines, we show that classification performance at 

least as good as published results can be obtained on acute leukemia and diffuse large B-cell 

lymphoma microarray data sets. We also demonstrate that a combined use of different classification 

and feature selection approaches makes it possible to select relevant genes with high confidence. This 

is also the first paper which discusses both computational and biological evidence for the involvement 

of zyxin in leukaemogenesis.  

Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure−Property 

Relationship Studies of Metal Complexation with Ionophores 

A benchmark of several popular methods, Associative Neural Networks (ANN), Support Vector 

Machines (SVM), k Nearest Neighbors (kNN), Maximal Margin Linear Programming (MMLP), 

Radial Basis Function Neural Network (RBFNN), and Multiple Linear Regression (MLR), is reported 

for quantitative−structure property relationships (QSPR) of stability constants logK1 for the 1:1 (M:L) 

and log_2 for 1:2 complexes of metal cations Ag+ and Eu3+ with diverse sets of organic molecules in 

water at 298 K and ionic strength 0.1 M. The methods were tested on three types of descriptors: 

molecular descriptors including E-state values, counts of atoms determined for E-state atom types, 

and substructural molecular fragments (SMF). 

 

1.2. Installing and running WEKA 

1.2.1. In lab (this assumes WEKA is already installed) 

1.2.2. On your home computer 

For installing WEKA on your home computer you must check the following: 

There are two stable versions of WEKA. Either you can download the self-extraction executable 

version that includes the Java Virtual Machine 1.4 (WEKA-3-4jre.exe; 19,543,851bytes), 

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4jre.exe or the self-extracting executable 

without Java VM (WEKA-3-4.exe; 6,467,165 bytes). 

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4.exe 
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This version comes with the GUI, which provides the user with more flexibility than the command 

line. 

After extracting the files, you will need to set your classpath variable to a complete path to WEKA.jar 

(suppose you extracted WEKA to C:\WEKA, then set your classpath variable to 

C:\WEKA\WEKA.jar, ie add "C:\WEKA\WEKA.jar;" to the list of values that environment variable 

Path can take when working in Windows) 

If you don't have administrator privileges, you can still install WEKA. For that, download the jar 

archive (WEKA-3-4.jar; 6,322,417 bytes). 

http://prdownloads.sourceforge.net/WEKA/WEKA-3-4.jar 

Make sure that the Java J2SE 1.4 (download from SUN) is installed on your system (which includes 

the jar utility). Then open a command line console, change into the directory containing WEKA-3-

4.jar, and enter 

jar -xvf WEKA-3-4.jar 

This will create a new directory called WEKA-3-4. To un-jar (install) the source code, position 

yourself in the recently created WEKA-3-4 directory and type 

jar -xvf WEKA-src.jar 

Which will create a new directory WEKA containing the source code. Since WEKA is open source 

software issued under the GNU General Public License, you can use and modify the source code as 

you like. 

NOTE: It seems that Windows will not set up your CLASSPATH properly if any of the WEKA 

directories contains spaces. Therefore, installing WEKA in the Program Files folder is not a good 

idea. 

 

1.3. Online documentation and further help 

From your WEKA-3-4 directory, you will find: 

 A jarfile containing the classes only 

 A jarfile containing the complete source code 

 The tutorial for the experiment environment in the GUI version of WEKA (written by David 

Scuse), and the README file 

 The API documentation 

 Some example datasets 

The most detailed and up-to-date information could be found in the online documentation on WEKA 

Web Site. This page has a lot of documentation and guides on installation/usage pages. 

http://www.cs.waikato.ac.nz/~ml/WEKA/index_documentation.html 

 

 



 

20 
 

1.4. Launching WEKA 

The WEKA GUI Chooser (class WEKA.gui.GUIChooser) provides a starting point for launching 

WEKA’s main GUI applications and supporting tools. If one prefers a MDI (“multiple document 

interface”) appearance, then this is provided by an alternative launcher called “Main” (class 

WEKA.gui.Main). 

The GUI Chooser consists of four buttons—one for each of the four major WEKA applications—and 

four menus. 

The buttons can be used to start the following applications: 

• Explorer An environment for exploring data with WEKA (the rest of this documentation 

deals with this application in more detail). 

• Experimenter An environment for performing experiments and conducting statistical tests 

between learning schemes. 

• KnowledgeFlow This environment supports essentially the same functions as the Explorer 

but with a drag-and-drop interface. One advantage is that it supports incremental learning. 

• SimpleCLI Provides a simple command-line interface that allows direct execution of WEKA 

commands for operating systems that do not provide their own command line interface. 

The menu consists of four sections: 

1. Program 

• LogWindow Opens a log window that captures all that is printed to stdout or stderr. 

Useful for environments like MS Windows, where WEKA is normally not started from a 

terminal. 

• Exit Closes WEKA. 

2. Tools - Other useful applications. 

• ArffViewer An MDI application for viewing ARFF files in spread-sheet format. 

• SqlViewer Represents an SQL worksheet, for querying databases via JDBC. 

• Bayes net editor An application for editing, visualizing and learning Bayes nets. 

3. Visualization - Ways of visualizing data with WEKA. 

• Plot For plotting a 2D plot of a dataset. 

• ROC Displays a previously saved ROC curve. 

• TreeVisualizer For displaying directed graphs, e.g., a decision tree. 

• GraphVisualizer Visualizes XML BIF or DOT format graphs, e.g., for Bayesian 

networks. 

• BoundaryVisualizer Allows the visualization of classifier decision boundaries in two 

dimensions. 

4. Help - Online resources for WEKA can be found here. 

• WEKA homepage Opens a browser window with WEKA’s home page. 



 

21 
 

• HOWTOs, code snippets, etc. The general WEKAWiki [2], containing lots of examples 

and HOWTOs around the development and use of WEKA. 

• WEKA on Sourceforge WEKA’s project homepage on Sourceforge.net. 

• SystemInfo Lists some internals about the Java/WEKA environment, e.g., the 

CLASSPATH. 

 

1.5. Simple CLI 

The Simple CLI provides full access to all WEKA classes, i.e., classifiers, filters, clusters, etc., but 

without the hassle of the CLASSPATH (it facilitates the one, with which WEKA was started). It 

offers a simple WEKA shell with separated command line and output. 

1.5.1. Commands 

The following commands are available in the Simple CLI: 

• java <classname> [<args>] invokes a java class with the given arguments (if any) 

• break stops the current thread, e.g., a running classifier, in a friendly manner 

• kill stops the current thread in an unfriendly fashion 

• cls clears the output area 

• exit exits the Simple CLI 

• help [<command>] provides an overview of the available commands if without a 

command name as argument, otherwise more help on the specified command 

 

1.5.2. Invocation 

In order to invoke a WEKA class, one has only to prefix the class with ”java”. This command tells the 

Simple CLI to load a class and execute it with any given parameters. E.g., the J48 classifier can be 

invoked on the iris dataset with the following command: 

java WEKA.classifiers.trees.J48 -t c:/temp/iris.arff 

 

1.5.3. Command Redirection 

Starting with this version of WEKA one can perform a basic redirection: 

java WEKA.classifiers.trees.J48 -t test.arff > j48.txt 

Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection, 

but part of another parameter. 

 

1.5.4. Command completion 

Commands starting with java support completion for classnames and filenames via Tab 

(Alt+BackSpace deletes parts of the command again). In case that there are several matches, WEKA 

lists all possible matches. 

• package name completion 
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- java WEKA.cl<Tab> 

- results in the following output of possible matches of package names: 

- Possible matches: 

- WEKA.classifiers 

- WEKA.clusterers 

• classname completion 

- java WEKA.classifiers.meta.A<Tab> 

- lists the following classes 

- Possible matches: 

- WEKA.classifiers.meta.AdaBoostM1 

- WEKA.classifiers.meta.AdditiveRegression 

- WEKA.classifiers.meta.AttributeSelectedClassifier 

• filename completion 

- In order for WEKA to determine whether a the string under the cursor 

- is a classname or a filename, filenames need to be absolute (Unix/Linx: 

- /some/path/file;Windows: C:\Some\Path\file) or relative and starting 

- with a dot (Unix/Linux: ./some/other/path/file;Windows: .\Some\Other\Path\file). 

 

1.5.5. The WEKA Explorer 

1.5.5.1. Section Tabs 

At the very top of the window, just below the title bar, is a row of tabs. When the Explorer is first 

started only the first tab is active; the others are greyed out. This is because it is necessary to open 

(and potentially pre-process) a data set before starting to explore the data. 

The tabs are as follows: 

1. Preprocess. Choose and modify the data being acted on. 

2. Classify. Train and test learning schemes that classify or perform regression. 

3. Cluster. Learn clusters for the data. 

4. Associate. Learn association rules for the data. 

5. Select attributes. Select the most relevant attributes in the data. 

6. Visualize. View an interactive 2D plot of the data. 

Once the tabs are active, clicking on them flicks between different screens, on which the respective 

actions can be performed. The bottom area of the window (including the status box, the log button, 

and the WEKA bird) stays visible regardless of which section you are in. 
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1.5.5.2. Preprocessing 

1.5.5.2.1. Opening Files 

The first three buttons at the top of the preprocess section enable you to load data into WEKA: 

o Open file.... Brings up a dialog box allowing you to browse for the data file on the local 

filesystem. 

o Open URL.... Asks for a Uniform Resource Locator address for where the data is stored. 

o Open DB.... Reads data from a database. 

 

1.5.5.2.2. The Current Relation 

Once some data has been loaded, the Preprocess panel shows a variety of information. The Current 

relation box (the “current relation” is the currently loaded data, which can be interpreted as a single 

relational table in database terminology) has three entries: 

o Relation. The name of the relation, as given in the file it was loaded from. Filters 

(described below) modify the name of a relation. 

o Instances. The number of instances (data points/records) in the data. 

o Attributes. The number of attributes (features) in the data. 

 

1.5.5.2.3. Working with Attributes 

Below the Current relation box is a box titled Attributes. There are three buttons, and beneath them is 

a list of the attributes in the current relation. The list has three columns: 

o No.. A number that identifies the attribute in the order they are specified in the data file. 

- Selection tick boxes. These allow you select which attributes are present in the relation. 

- Name. The name of the attribute, as it was declared in the data file. When you click on 

different rows in the list of attributes, the fields change in the box to the right titled 

Selected attribute. This box displays the characteristics of the currently highlighted 

attribute in the list: 

1. Name. The name of the attribute, the same as that given in the attribute list. 

2. Type. The type of attribute, most commonly Nominal or Numeric. 

3. Missing. The number (and percentage) of instances in the data for which this attribute is 

missing (unspecified). 

4. Distinct. The number of different values that the data contains for this attribute. 

5. Unique. The number (and percentage) of instances in the data having a value for this attribute 

that no other instances have. 

Below these statistics is a list showing more information about the values stored in this attribute, 

which differ depending on its type. If the attribute is nominal, the list consists of each possible value 

for the attribute along with the number of instances that have that value. If the attribute is numeric, the 

list gives four statistics describing the distribution of values in the data - the minimum, maximum, 
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mean and standard deviation. And below these statistics there is a colored histogram, color-coded 

according to the attribute chosen as the Class using the box above the histogram. (This box will bring 

up a drop-down list of available selections when clicked.) Note that only nominal Class attributes will 

result in a color-coding. Finally, after pressing the Visualize All button, histograms for all the 

attributes in the data are shown in a separate witting. 

Returning to the attribute list, to begin with all the tick boxes are unticked. They can be toggled 

on/off by clicking on them individually. The three buttons above can also be used to change the 

selection: 

1. All. All boxes are ticked. 

2. None. All boxes are cleared (unticked). 

3. Invert. Boxes that are ticked become unticked and vice versa. 

Once the desired attributes have been selected, they can be removed by clicking the Remove button 

below the list of attributes. Note that this can be undone by clicking the Undo button, which is located 

next to the Edit button in the top-right corner of the Preprocess panel. 

 

1.5.5.2.4. Working With Filters 

The preprocess section allows filters to be defined that transform the data in various ways. The Filter 

box is used to set up the filters that are required. At the left of the Filter box is a Choose button. By 

clicking this button it is possible to select one of the filters in WEKA. Once a filter has been selected, 

its name and options are shown in the field next to the Choose button. Clicking on this box brings up 

a GenericObjectEditor dialog box. 

The GenericObjectEditor dialog box lets you configure a filter. The same kind of dialog box is used 

to configure other objects, such as classifiers and clusters (see below). The fields in the window 

reflect the available options. 

Clicking on any of these gives an opportunity to alter the filters settings. For example, the setting 

may take a text string, in which case you type the string into the text field provided. Or it may give a 

drop-down box listing several states to choose from. Or it may do something else, depending on the 

information required. Information on the options is provided in a tool tip if you let the mouse pointer 

over of the corresponding field. More information on the filter and its options can be obtained by 

clicking on the More button in the About panel at the top of the GenericObjectEditor window. Some 

objects display a brief description of what they do in an About box, along with a More button. 

Clicking on the More button brings up a window describing what the different options do. 

At the bottom of the GenericObjectEditor dialog are four buttons. The first two, Open... and Save... 

allow object configurations to be stored for future use. The Cancel button backs out without 

remembering any changes that have been made. Once you are happy with the object and settings you 

have chosen, click OK to return to the main Explorer window. 
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Applying Filters 

Once you have selected and configured a filter, you can apply it to the data by pressing the Apply 

button at the right end of the Filter panel in the Preprocess panel. The Preprocess panel will then 

show the transformed data. The change can be undone by pressing the Undo button. You can also use 

the Edit... button to modify your data manually in a dataset editor. Finally, the Save... button at the 

top right of the Preprocess panel saves the current version of the relation in the same formats 

available for loading data, allowing it to be kept for future use. 

Note: Some of the filters behave differently depending on whether a class attribute has been set or not 

(using the box above the histogram, which will bring up a drop-down list of possible selections when 

clicked). In particular, the “supervised filters” require a class attribute to be set, and some of the 

“unsupervised attribute filters” will skip the class attribute if one is set. Note that it is also possible to 

set Class to None, in which case no class is set. 

 

1.5.5.3. Classification 

1.5.5.3.1. Selecting a Classifier 

At the top of the classify section is the Classifier box. This box has a text field that gives the name of 

the currently selected classifier, and its options. Clicking on the text box brings up a 

GenericObjectEditor dialog box, just the same as for filters that you can use to configure the options 

of the current classifier. The Choose button allows you to choose one of the classifiers that are 

available in WEKA. 

 

1.5.5.3.2. Test Options 

The result of applying the chosen classifier will be tested according to the options that are set by 

clicking in the Test options box. There are four test modes: 

1. Use training set. The classifier is evaluated on how well it predicts the class of the instances 

it was trained on. 

2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of 

instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to 

choose the file to test on. 

3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds 

that are entered in the Folds text field. 

4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of 

the data which is held out for testing. The amount of data held out depends on the value 

entered in the % field. 
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1.5.5.3.3. The Class Attribute 

The classifiers in WEKA are designed to be trained to predict a single ‘class’ attribute, which is the 

target for prediction. Some classifiers can only learn nominal classes; others can only learn numeric 

classes (regression problems); still others can learn both. By default, the class is taken to be the last 

attribute in the data. If you want to train a classifier to predict a different attribute, click on the box 

below the Test options box to bring up a drop-down list of attributes to choose from. 

 

1.5.5.3.4. Training a Classifier 

Once the classifier, test options and class have all been set, the learning process is started by clicking 

on the Start button. While the classifier is busy being trained, the little bird moves around. You can 

stop the training process at any time by clicking on the Stop button. When training is complete, 

several things happen. The Classifier output area to the right of the display is filled with text 

describing the results of training and testing. A new entry appears in the Result list box. We look at 

the result list below; but first we investigate the text that has been output. 

 

1.5.5.3.5. The Classifier Output Text 

The text in the Classifier output area has scroll bars allowing you to browse the results. Of course, you 

can also resize the Explorer window to get a larger display area. The output is split into several 

sections: 

1. Run information. A list of information giving the learning scheme options, relation name, 

instances, attributes and test mode that were involved in the process. 

2. Classifier model (full training set). A textual representation of the classification model that was 

produced on the full training data. 

3. The results of the chosen test mode are broken down thus: 

4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the true 

class of the instances under the chosen test mode. 

5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier’s prediction 

accuracy. 

6. Confusion Matrix. Shows how many instances have been assigned to each class. Elements show 

the number of test examples whose actual class is the row and whose predicted class is the column. 

 

1.5.5.3.6. The Result List 

After training several classifiers, the result list will contain several entries. Left-clicking the entries 

flicks back and forth between the various results that have been generated. Right-clicking an entry 

invokes a menu containing these items: 

1. View in main window. Shows the output in the main window (just like left-clicking the entry). 

2. View in separate window. Opens a new independent window for viewing the results. 
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3. Save result buffer. Brings up a dialog allowing you to save a text file containing the textual output. 

4. Load model. Loads a pre-trained model object from a binary file. 

5. Save model. Saves a model object to a binary file. Objects are saved in Java ‘serialized object’ 

form. 

6. Re-evaluate model on current test set. Takes the model that has been built and tests its 

performance on the data set that has been specified with the Set.. button under the Supplied test set 

option. 

7. Visualize classifier errors. Brings up a visualization window that plots the results of classification. 

Correctly classified instances are represented by crosses, whereas incorrectly classified ones show up 

as squares. 

8. Visualize tree or Visualize graph. Brings up a graphical representation of the structure of the 

classifier model, if possible (i.e. for decision trees or Bayesian networks). The graph visualization 

option only appears if a Bayesian network classifier has been built. In the tree visualizer, you can 

bring up a menu by right-clicking a blank area, pan around by dragging the mouse, and see the 

training instances at each node by clicking on it. CTRL-clicking zooms the view out, while SHIFT-

dragging a box zooms the view in. The graph visualizer should be self-explanatory. 

9. Visualize margin curve. Generates a plot illustrating the prediction margin. The margin is defined 

as the difference between the probability predicted for the actual class and the highest probability 

predicted for the other classes. For example, boosting algorithms may achieve better performance on 

test data by increasing the margins on the training data. 

10. Visualize threshold curve. Generates a plot illustrating the tradeoffs in prediction that are 

obtained by varying the threshold value between classes. For example, with the default threshold 

value of 0.5, the predicted probability of ‘positive’ must be greater than 0.5 for the instance to be 

predicted as ‘positive’. The plot can be used to visualize the precision/recall tradeoff, for ROC curve 

analysis (true positive rate vs false positive rate), and for other types of curves. 

11. Visualize cost curve. Generates a plot that gives an explicit representation of the expected cost, as 

described by Drummond and Holte (2000). Options are greyed out if they do not apply to the specific 

set of results. 

 

1.5.5.4. Clustering 

1.5.5.4.1. Selecting a Clusterer 

By now you will be familiar with the process of selecting and configuring objects. Clicking on the 

clustering scheme listed in the Clusterer box at the top of the window brings up a 

GenericObjectEditor dialog with which to choose a new clustering scheme. 
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1.5.5.4.2. Cluster Modes 

The Cluster mode box is used to choose what to cluster and how to evaluate the results. The first 

three options are the same as for classification: Use training set, Supplied test set and Percentage 

split — the data is assigned to clusters instead of trying to predict a specific class. The fourth mode, 

Classes to clusters evaluation, compares how well the chosen clusters match up with a pre-assigned 

class in the data. The drop-down box below this option selects the class, just as in the Classify panel. 

An additional option in the Cluster mode box, the Store clusters for visualization tick box, 

determines whether or not it will be possible to visualize the clusters once training is complete. When 

dealing with datasets that are so large that memory becomes a problem it may be helpful to disable 

this option. 

 

1.5.5.4.3. Ignoring Attributes 

Often, some attributes in the data should be ignored when clustering. The Ignore attributes button 

brings up a small window that allows you to select which attributes are ignored. Clicking on an 

attribute in the window highlights it, holding down the SHIFT key selects a range of consecutive 

attributes, and holding down CTRL toggles individual attributes on and off. To cancel the selection, 

back out with the Cancel button. To activate it, click the Select button. The next time clustering is 

invoked, the selected attributes are ignored. 

 

1.5.5.4.4. Learning Clusters 

The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a result 

list. These all behave just like their classification counterparts. Right-clicking an entry in the result list 

brings up a similar menu, except that it shows only two visualization options: Visualize cluster 

assignments and Visualize tree. The latter is grayed out when it is not applicable. 

 

1.5.5.5. Associating 

1.5.5.5.1. Setting Up 

This panel contains schemes for learning association rules, and the learners are chosen and configured 

in the same way as the clusterers, filters, and classifiers in the other panels. 

1.5.5.5.2. Learning Associations 

Once appropriate parameters for the association rule learner bave been set, click the Start button. 

When complete, right-clicking on an entry in the result list allows the results to be viewed or saved. 

1.5.5.6. Selecting Attributes 

1.5.5.6.1. Searching and Evaluating 

Attribute selection involves searching through all possible combinations of attributes in the data to 

find which subset of attributes works best for prediction. To do this, two objects must be set up: an 
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attribute evaluator and a search method. The evaluator determines what method is used to assign a 

worth to each subset of attributes. The search method determines what style of search is performed. 

The Attribute Selection Mode box has two options: 

1. Use full training set. The worth of the attribute subset is determined using the full set of training 

data. 

2. Cross-validation. The worth of the attribute subset is determined by a process of cross-validation. 

The Fold and Seed fields set the number of folds to use and the random seed used when shuffling the 

data. There is a drop-down box that can be used to specify which attribute to treat as the class. 

1.5.5.6.2. Performing Selection 

Clicking Start starts running the attribute selection process. When it is finished, the results are output 

into the result area, and an entry is added to the result list. Right-clicking on the result list gives 

several options. The first three, (View in main window, View in separate window and Save result 

buffer), are the same as for the classify panel. It is also possible to Visualize reduced data, or if you 

have used an attribute transformer such as Principal Components, Visualize transformed data. 

 

1.5.5.7. Visualizing 

WEKA’s visualization section allows you to visualize 2D plots of the current relation. 

 

1.5.5.7.1. The scatter plot matrix 

When you select the Visualize panel, it shows a scatter plot matrix for all the attributes, color coded 

according to the currently selected class. It is possible to change the size of each individual 2D plot 

and the point size, and to randomly jitter the data (to uncover obscured points). It also possible to 

change the attribute used to color the plots, to select only a subset of attributes for inclusion in the 

scatter plot matrix, and to sub sample the data. Note that changes will only come into effect once the 

Update button has been pressed. 

 

1.5.5.7.2. Selecting an individual 2D scatter plot 

When you click on a cell in the scatter plot matrix, this will bring up a separate window with a 

visualization of the scatter plot you selected. 

 

1.5.5.7.3. Selecting Instances 

A group of data points can be selected in four ways: 

a. Select Instance. Clicking on an individual data point brings up a window listing its attributes. 

If more than one point appears at the same location, more than one set of attributes is shown. 

b. Rectangle. You can create a rectangle, by dragging, that selects the points inside it. 
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c. Polygon. You can build a free-form polygon that selects the points inside it. Left-click to add 

vertices to the polygon, right-click to complete it. The polygon will always be closed off by 

connecting the first point to the last. 

d. Polyline. You can build a polyline that distinguishes the points on one side from those on the 

other. Left-click to add vertices to the polyline, right-click to finish. The resulting shape is open 

(as opposed to a polygon, which is always closed). Once an area of the plot has been selected 

using Rectangle, Polygon or Polyline, it turns grey. At this point, clicking the Submit button 

removes all instances from the plot except those within the grey selection area. Clicking on the 

Clear button erases the selected area without affecting the graph. Once any points have been 

removed from the graph, the Submit button changes to a Reset button. This button undoes all 

previous removals and returns you to the original graph with all points included. Finally, 

clicking the Save button allows you to save the currently visible instances to a new ARFF file. 

 

2. Examples 

2.1. Practice WEKA with the classification example about Play Golf 

Data format: the Datasets for WEKA are formatted according to the arff format. For this example 

you will use the file weather.nominal.arff as a training file to construct a classification model. Save 

the file in your workspace for example (C:\WEKA_Tutorial), and open it in a text processor to see an 

example of the arff format; note that the last attribute corresponds to the class. 

 

Run WEKA in the Windows environment: 

Find the WEKA directory in your machine (C:\Program Files\WEKA-3-4). Double click in the 

file"WEKA.jar"; Select the option "Simple CLI". Now you are ready to run WEKA using some 

commands in this window. 

 

Probe the example with different classifiers, and compare the results obtained with each of the 

classifiers for example in terms of and number of examples correctly and incorrectly classified: 

Decision Trees: In order to probe decision tree you will use the Id3 classifier. Type the following 

command: 

java WEKA.classifiers.trees.Id3 -t PATH/weather.nominal.arff 

(note that the option -t calls the training file according the PATH location of this file in your 

machine) 

Support Vector Machines: In order to probe the SVM classifier, type the following command 

java WEKA.classifiers.functions.SMO -t PATH/weather.nominal.arff 
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Neural Networks: In order to probe the NNs classifier, type the following command: 

 java WEKA.classifiers.functions.VotedPerceptron -t PATH/weather.nominal.arff 

 

Naive Bayes: In order to probe the NB classifier, type the following command: 

java WEKA.classifiers.bayes.NaiveBayes -t PATH/weather.nominal.arff 

 

Save the classification model and then use it to classify new examples: You can save the 

classification model generated by each one of the above classifiers by using the option -d in the 

following way: 

java WEKA.classifiers.TYPE.CLASSIFIER_NAME -t PATH/weather.nominal.arff -d 

PATH/modelname.model 

 

You should generate a file that contains the model; this can be named for example in the form: 

weather_Id3.model 

weather_SVM.model 

weather_NN.model 

weather_NB.model 

e.g. by 

java WEKA.classifiers.trees.Id3 -t PATH/weather.nominal.arff -d PATH/weather_Id3.model 

 

In order to use the stored model to classify new examples, use the file "test_weather.arff" (save this 

file in the same folder than weather.nominal.arff and *.model files). In this file you have two 

examples without classification. Then classify these examples using the models previously generated 

in the following way: 

java WEKA.classifiers.~.classifier_name -T PATH/test_weather.arff -l 

PATH/modelname.model -p 0 

In this case you use the options: -T that calls a test file (test_weather.arff); and -l that call the model 

file to be used. Compare the results obtained using the four models generated. 

 

2.2. Classification of breast cancer examples 

Download the file Breast_Cancer.arff that include a set of 699 cases, 9 attributes and the class 

attribute related to the type of cancer cell (in this dataset class 4 is equivalent to malignant cells and 

class 2 is equivalent to benign cells). This dataset is from the Wisconsin Breast Cancer Database 

(January 8, 1991). You can look for this and others examples of dataset in this link. 
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2.3. Classification of Gene expression data 

Download the file ALLAML.arff ((Golub et al 1999)) gene expression data that include 72 examples, 

7129 genes (attributes) and 2 clases "acute myeloid leukemia (AML)" and "acute lymphoblastic 

leukemia (ALL)". For more information you can read the gene list in the file 

ALLAML.gene_names.txt, and in the paper Golub et al 1999. 

Classify the examples in this dataset (ALL or AML class) using the four classifiers mentioned in the 

exercise 1, and compare the results. 

Interpretation: Go to PubMed and search the selected genes, do they have any biological meaning? 

Can you identify the unknown gene function? (Try using other bioinformatics tools) 

 

3. Assignments 

3.1 Become familiar with the vowel data set and use it to perform the following experiments: 

a. Remove the first three attributes as well as the class attribute. 

b. Cluster the data using the simple k-Means algorithm, with values of k from 1 to 12. What do 

you see? 

c. Now add the class attribute back in and repeat the clustering, comparing the clustering with 

the class. How well does the clustering appear to correlate with class? What might this mean? 

d. Choose several different classifiers and use them to classify the data. How does their 

performance compare with the clustering's "performance"? Is this something you might 

expect? 

e. Does adding back in any of the original first three attributes have any effect on either the 

clustering or the classification performance? 
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WORKING WITH DATA IN WEKA 

 

Purpose: 

− Attribute-Relation File Format (ARFF) 

− Managing the data flow using WEKA 

 

1 Preparation Before Lab 

Attribute-Relation File Format (ARFF): An ARFF (Attribute-Relation File Format) file is 

an ASCII text file that describes a list of instances sharing a set of attributes. ARFF files have 

two distinct sections. The first section is the Header information, which is followed the Data 

information. 

The Header of the ARFF file contains the name of the relation, a list of the attributes (the 

columns in the data), and their types. 

The Data of the ARFF file looks like the following: 

@DATA 

5.1,3.5,1.4,0.2,Iris-setosa 

4.9,3.0,1.4,0.2,Iris-setosa 

 

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and 

@DATA declarations are case insensitive. 

 

The ARFF Header Section 

The ARFF Header section of the file contains the relation declaration and attribute 

declarations. 

 

The @relation Declaration 

The relation name is defined as the first line in the ARFF file. The format is: 

@relation <relation-name> 

where <relation-name> is a string. The string must be quoted if the name includes spaces. 

 

The @attribute Declarations 

Attribute declarations take the form of an ordered sequence of @attribute statements. Each 

attribute in the data set has its own @attribute statement which uniquely defines the name of 
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that attribute and it's data type. The order the attributes are declared indicates the column 

position in the data section of the file. For example, if an attribute is the third one declared 

then Weka expects that all that attributes values will be found in the third comma delimited 

column. 

The format for the @attribute statement is: 

@attribute <attribute-name> <datatype> 

where the <attribute-name> must start with an alphabetic character. If spaces are to be 

included in the name then the entire name must be quoted. 

The <datatype> can be any of the four types currently supported by Weka: 

• numeric 

• <nominal-specification> 

• string 

• date [<date-format>] 

where <nominal-specification> and <date-format> are defined below. The keywords 

numeric, string and date are case insensitive. 

 

Numeric attributes: Numeric attributes can be real or integer numbers. 

Nominal attributes: Nominal values are defined by providing an <nominal-specification> 

listing the possible values: {<nominalname1>, <nominal-name2>, <nominal-name3>, ...} 

For example, the class value of the Iris dataset can be defined as follows: 

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica} 

Values that contain spaces must be quoted. 

String attributes: String attributes allow us to create attributes containing arbitrary textual 

values. This is very useful in text-mining applications, as we can create datasets with string 

attributes, then write Weka Filters to manipulate strings (like StringToWordVectorFilter). 

String attributes are declared as follows: 

@ATTRIBUTE LCC string 

Date attributes: Date attribute declarations take the form: 

@attribute <name> date [<date-format>] 

where <name> is the name for the attribute and <date-format> is an optional string specifying 

how date values should be parsed and printed. The default format string accepts the ISO-8601 

combined date and time format: 

"yyyy-MM-dd'T'HH:mm:ss". 
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Dates must be specified in the data section as the corresponding string representations of the 

date/time 

 

ARFF Data Section 

The ARFF Data section of the file contains the data declaration line and the actual instance 

lines. 

The @data Declaration 

The @data declaration is a single line denoting the start of the data segment in the file. The 

format is: 

@data 

The instance data 

Each instance is represented on a single line, with carriage returns denoting the end of the 

instance. Attribute values for each instance are delimited by commas. They must appear in 

the order that they were declared in the header section (i.e. the data corresponding to the nth 

@attribute declaration is always the nth field of the attribute). 

Missing values are represented by a single question mark, as in: 

@data 

4.4,?,1.5,?,Iris-setosa 

Values of string and nominal attributes are case sensitive, and any that contain space must be 

quoted, as follows: 

@relation LCCvsLCSH 

@attribute LCC string 

@attribute LCSH string 

@data 

AG5, 'Encyclopedias and dictionaries.;Twentieth century.' 

AS262, 'Science -- Soviet Union -- History.' 

Dates must be specified in the data section using the string representation specified in the 

attribute declaration. For example: 

@RELATION Timestamps 

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" 

@DATA 

"2001-04-03 12:12:12" 
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Sparse ARFF files 

Sparse ARFF files are very similar to ARFF files, but data with value 0 are not be explicitly 

represented. Sparse ARFF files have the same header (i.e @relation and @attribute tags) but 

the data section is different. Instead of representing each value in order, like this: 

@data 

0, X, 0, Y, "class A" 

0, 0, W, 0, "class B" 

the non-zero attributes are explicitly identified by attribute number and their value stated, like 

this: 

@data 

{1 X, 3 Y, 4 "class A"} 

{2 W, 4 "class B"} 

 

Each instance is surrounded by curly braces, and the format for each entry is: <index> 

<space> <value> where index is the attribute index (starting from 0). 

Note that the omitted values in a sparse instance are 0, they are not "missing" values! If a 

value is unknown, you must explicitly represent it with a question mark (?). 

 

3. Weka GUI 

3.1. The Command Line Interface 

- One can use the command line interface of Weka either through a command prompt 

or through the SimpleCLI mode 

- For example to fire up Weka and run J48 on a ARFF file present in the current 

working directory, the command is: 

Java weka.ctassifiers.trees.J48 -t weather.arff 

 

- Weka consists of a hierarchical package system. For example here J48 program is part 

of the trees package which further resides in the classifier package. Finally the weka 

package contains the classifiers package 

- Each time the Java virtual machine executes J48, it creates an instance of this class by 

allocating memory for building and storing a decision tree classifier 

- The -t option was used in the command line to communicate the name of the training 

file to the learning algorithm 
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Weka.filters 

The weka.filters package is concerned with classes that transform datasets -- by removing or 

adding attributes, resampling the dataset, removing examples and so on. This package offers 

useful support for data preprocessing, which is an important step in machine learning. 

 

All filters offer the options -i for specifying the input dataset, and -o for specifying the output 

dataset. If any of these parameters is not given, this specifies standard input resp. output for 

use within pipes. Other parameters are specific to each filter and can be found out via -h, as 

with any other class. The weka.filters package is organized into supervised and unsupervised 

filtering, both of which are again subdivided into instance and attribute filtering. We will 

discuss each of the four subsection separately. 

 

3.1.1.Weka.filters.supervised 

Classes below weka.filters.supervised in the class hierarchy are for supervised filtering, i.e. 

taking advantage of the class information. A class must be assigned via -c, for WEKA default 

behaviour use -c last. 

3.1.1.1.Attribute 

Discretize is used to discretize numeric attributes into nominal ones, based on the class 

information, via Fayyad & Irani's MDL method, or optionally with Kononeko's MDL 

method. At least some learning schemes or classifiers can only process nominal data, e.g. 

rules.Prism; in some cases discretization may also reduce learning time. 

java weka.filters.supervised.attribute.Discretize -i data/iris.arff -o iris-nom.arff -c last 

java weka.filters.supervised.attribute.Discretize -i data/cpu.arff -o cpu-classvendor-

nom.arff -c first 

NominalToBinary encodes all nominal attributes into binary (two-valued) attributes, which 

can be used to transform the dataset into a purely numeric representation, e.g. for 

visualization via multi-dimensional scaling. 

java weka.filters.supervised.attribute.NominalToBinary -i data/contact-lenses.arff -o 

contact-lenses-bin.arff -c last 

Keep in mind that most classifiers in WEKA utilize transformation filters internally, e.g. 

Logistic and SMO, so you will usually not have to use these filters explicity. However, if you 

plan to run a lot of experiments, pre-applying the filters yourself may improve runtime 

performance. 
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3.1.1.2.Instance 

Resample creates a stratified subsample of the given dataset. This means that overall class 

distributions are approximately retained within the sample. A bias towards uniform class 

distribution can be specified via -B. 

java weka.filters.supervised.instance.Resample -i data/soybean.arff -o soybean-

5%.arff -c last -Z 5 

java weka.filters.supervised.instance.Resample -i data/soybean.arff -o soybean-

uniform-5%.arff -c last -Z 

5 -B 1 

 

StratifiedRemoveFolds creates stratified cross-validation folds of the given dataset. This 

means that per default the class distributions are approximately retained within each fold. The 

following example splits soybean.arff into stratified training and test datasets, the latter 

consisting of 25% (=1/4) of the data. 

java weka.filters.supervised.instance.StratifiedRemoveFolds -i data/soybean.arff -o 

soybean-train.arff \ 

-c last -N 4 -F 1 -V 

java weka.filters.supervised.instance.StratifiedRemoveFolds -i data/soybean.arff -o 

soybean-test.arff \ 

-c last -N 4 -F 1 

 

3.1.2.Weka.filters.unsupervised 

Classes below weka.filters.unsupervised in the class hierarchy are for unsupervised filtering, 

e.g. the non-stratified version of Resample. A class should not be assigned here. 

 

3.1.2.1.Attribute 

StringToWordVector transforms string attributes into a word vectors, i.e. creating one 

attribute for each word which either encodes presence or word count (-C) within the string. -

W can be used to set an approximate limit on the number of words. When a class is assigned, 

the limit applies to each class separately. This filter is useful for textmining. 

Obfuscate renames the dataset name, all attribute names and nominal attribute values. This is 

intended for exchanging sensitive datasets without giving away restricted information.  

Remove is intended for explicit deletion of attributes from a dataset, e.g. for removing 

attributes of the iris dataset: 
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java weka.filters.unsupervised.attribute.Remove -R 1-2 -i data/iris.arff -o iris-

simplified.arff 

java weka.filters.unsupervised.attribute.Remove -V -R 3-last -i data/iris.arff -o iris-

simplified.arff 

 

3.1.2.2.Instance 

Resample creates a non-stratified subsample of the given dataset, i.e. random sampling 

without regard to the class information. Otherwise it is equivalent to its supervised variant. 

java weka.filters.unsupervised.instance.Resample -i data/soybean.arff -o soybean-

5%.arff -Z 5 

RemoveFolds creates cross-validation folds of the given dataset. The class distributions are 

not retained. The following example splits soybean.arff into training and test datasets, the 

latter consisting of 25% (=1/4) of the data. 

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff -o soybean-

train.arff -c last -N 

4 -F 1 -V 

java weka.filters.unsupervised.instance.RemoveFolds -i data/soybean.arff -o soybean-

test.arff -c last -N 4 

-F 1 

 

RemoveWithValues filters instances according to the value of an attribute. 

java weka.filters.unsupervised.instance.RemoveWithValues -i data/soybean.arff \ 

-o soybean-without_herbicide_injur 

 

General options 

Option     Function 

-t <training file>   Specify training file 

-T <test file>  Specify test file; if none, a cross-validation is 

performed on the training data 

-c <class index>   Specify index of class attribute 

-s <random number stxxi>  Specify random number seed for cross-validation 

-x <number of folds>    Specify number of folds for cross-valioation 

-m<cost matrix file>   Specify file containing cost matrix 
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-d <output file>    Specify output file for model 

-1 <input file>    Specify input file for model 

o     Output statistics only, not the classifier 

-i  Output information retrieval statistics for two-class  

problems 

-k      Output information-theoretical statistics 

-p <attribute range>    Output predictions for test instances 

-v      Output no statistics for training data 

r      Output cumulative margin distribution 

-z <class name>    Output source representation of classifier 

-g     Output graph representation of classifier 

 

3.2. Explorer 

Start up Weka. You will have a choice between the Command Line Interface, the 

Experimenter, the Explorer and Knowledge flow. Initially, we'll stick with the Explorer. 

Once you click on that you'll see the main GUI. 
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You now have a number of choices, but before you can work with any data, you'll have to 

load it into Weka. For now, we'll use one of the datasets that are included, but later on you'll 

have to get any file you'll use into the right format. Open a file from the data subcategory, for 

example the Iris data to find the following screen. 

 

 

You'll notice that Weka now provides some information about the data, such as for 

example the number of instances, the number of attributes, and also some statistical 

information about the attributes one at a time. Figure out how to switch between attributes for 

which this statistical information is displayed. 

 

Visualization 

There are a number of ways in which you can use Weka to visualize your data. The main 

GUI will show a histogram for the attribute distributions for a single selected attribute at a 

time, by default this is the class attribute. Note that the individual colors indicate the 

individual classes (the Iris dataset has 3). If you move the mouse over the histogram, it will 

show you the ranges and how many samples fall in each range. The button VISUALIZE ALL 

will let you bring up a screen showing all distributions at once as in the picture below. 
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There is also a tab called VISUALIZE. Clicking on that will open the scatter plots for all 

attribute pairs: 

 

 

From these scatter plots, we can infer a number of interesting things. For example, in 

the picture above we can see that in some examples the clusters (for now, think of clusters as 

collections of points that are physically close to each other on the screen) and the different 

colors correspond to each other such as for example in the plots for class/(any attribute) pairs 

and the petal width/petal length attribute pair, whereas for other pairs (sepal width/sepal 

length for example) it's much harder to separate the clusters by color. 

 

By default, the colors indicate the different classes, in this case we used red and two 

shades of blue. Left clicking on any of the highlighted class names towards the bottom of the 

screenshot allows you to set your own color for the classes. Also, by default, the color is used 

in conjunction with the class attribute, but it can be useful to color the other attributes as well. 
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For example, changing the color to the fourth attribute by clicking on the arrow next to the 

bar that currently reads Color: class (Num) and selecting pedalwidth enables us to observe 

even more about the data, for example the fact that for the class/sepallength attribute pair, 

which range of attribute values (indicated by different color) tends to go along with which 

class. 

 

Filters 

There are also a number of filters available, which apply different criterial to select 

either objects (the rows in your data matrix) or attributes (the columns in your data matrix). 

This allows you to discard parts of your matrix without having to manipulate your original 

data file. For example, you can look at subsets of attributes, discard the first 20 rows, 

normalize or discretize atttributes and so on. To apply a filter, you first have to select which 

type of filter you'd like by clicking on the CHOOSE button right underneath Filter in your 

main GUI. Double clicking on the FILTER folder that appeared will expand the window to 

show two folders named supervised and unsupervised, both of which you can expand again. 

Both unsupervised and supervised filters can be applied to objects and attributes. Once you 

have chosen a filter, the selected option will show up in the bar next to FILTER, but at this 

stage, nothing has happened to your data yet. You then have to press apply to actually filter 

your data. There is alsoa SAVE button which allows you to save any changes you made to 

your data. Make sure you don't overwrite your original data file!  

 

The log file 

The log file is used to keep track of what you did. Clicking on LOG in your main GUI 

will bring up another window which will show exactly what you did, in this case it shows that 

we loaded the Iris data set and applied a filter.  
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Selecting Attributes 

       Weka also provides techniques to discard irrelevant attributes or reduce the 

dimensionality of your dataset. After loading a dataset, click on the select attributes tag to 

open a GUI which will allow you to choose both the evaluation method (such as Principal 

Components Analysis for example) and the search method (f. ex. greedy or exhaustive 

search). Depending on the chosen combination, the actual time spend on selecting attributes 

can vary substantially and can also be very long, even for small datasets such as the Iris data 

with only five features (including the class attribute) for each of the 150 samples. The picture 

below shows the results for a sample application. It is also important to note that not all 

evaluation/search method combinations are valid, watch out for the error message in the 

Status bar. There's also a problem using Discretize while in the preprocessing mode, which 

leads to false results. If you need to use this filter, you can work around this by using the 

FilteredClassifier option in the classify menu.Weka also provides techniques to discard 

irrelevant attributes or reduce the dimensionality of your dataset. After loading a dataset, 

click on the select attributes tag to open a GUI which will allow you to choose both the 

evaluation method (such as Principal Components Analysis for example) and the search 

method (for. ex. greedy or exhaustive search). Depending on the chosen combination, the 

actual time spend on selecting attributes can vary substantially and can also be very long, 

even for small datasets such as the Iris data with only five features (including the class 

attribute) for each of the 150 samples. The picture below shows the results for a sample 

application. It is also important to note that not all evaluation/search method combinations are 

valid, watch out for the error message in the Status bar. There's also a problem using 

Discretize while in the preprocessing mode, which leads to false results. If you need to use 

this filter, you can work around this by using the FilteredClassifier option in the classify 

menu. 
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Classification 

        Clicking on the classifier tab after loading a dataset into Weka and selecting the choose 

tab will bring up a menu with a number of choices for the classifier that is to be applied to the 

dataset. Note that you have 4 options on how to test the model you're building: Using the test 

set, a training set (you will need to specify the location of the training set in this case), cross 

validation and a percentage. The achieved accuracy of your model will vary, depending on 

the option you select. One pitfall to avoid is to select the training set as a test set, as that will 

result in 

an underestimate of the error rate. The resulting model, with a lot of additional information 

will be displayed after you click on start. What exactly is contained in the output can be 

determined under options. A sample output for applying the J48 decision tree algorithm to the 

Iris dataset is shown in the Figure below. 
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One of the things to watch out for is that the confusion matrix is displayed, as this gives a lot 

more information than just the prediction accuracy. Other useful things are the options 

showing up when right clicking the results list on the bottom right. For example, this is where 

you can load and save the models you built, as well as save the results page. Another fact to 

keep in mind is that Weka gives hints on how to achieve the same result from the command 

line: look at what is displayed next to the Choose button and how it changes with the options 

that you select. This information can also be found towards the top of your results page. 

Clustering 

The clustering option is very similar to the classification described above, with a few 

differences regarding the options you select. For instance, there is an easy way to discard 

undesired attributes. 
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Association Rules 

Weka also provides three algorithms to extract association rules from non-numerical 

data as shown in the picture below. 

 

3.3. Experimenter 

  The experimenter, which can be run from both the command line and a GUI, is a tool 

that allows you to perform more than one experiment at a time, maybe applying different 

techniques to a datasets, or the same technique repeatedly with different parameters. The 

Weka homepage provides a link to a tutorial for an earlier version of the Experimenter, which 

can be downloaded from here. 

If you choose the experimenter after starting Weka, you get the following screen. 
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After selecting new, which initializes a new experiment with default parameters, you 

can select where you want to store the results of your experiment by using browse (there are a 

number of choices available for the format of your results file). You can then change the 

default parameters if desired ( watch out for the option of selecting classification or 

regression). For example, you can add more datasets, delete the ones you already selected as 

well as add and delete algorithms applied to your selected datasets. You can also the type of 

experiment (cross validation or a percentage split for the training and test set). 

The following picture shows the setup for a n 8 fold cross validation, applying a 

decision tree and Naive Bayes to the iris and labor dataset that are included in the Weka 

Package. The results are to be stored in an ARFF file called MyResults.arff in the specified 

subfolder 

 

 

After running your experiment by selecting Start from the Run tab, your results will 

be stored in the specified Results file if the run was successful. You then need to load this file 

into Weka from the Analysis pane to see your results. The picture below shows the Analysis 

pane after loading the results file for the experiment set up above. 
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3.4. Knowledge Flow 

The knowledge flow is an alternative interface to the functionality provided by the 

Weka data mining package. WEKA components are selected from a tool bar, positioned a 

layout canvas, and connected into a directed graph to model a complete system that processes 

and analyzes data. 

Components available in the KnowledgeFlow: 

3.4.1. DataSources 

 

- used to indicate where data is coming from 

- supports various file types and sources 

- configurable for 

o file name of data source 

o dataset or instance (incremental) loading 

All of WEKA’s loaders are available. 
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3.4.2. DataSinks 

 

- used to indicate where data is going to be written 

- supports various file types and sources 

- configurable for 

o file name of data source 

All of WEKA’s savers are available. 

3.4.3. Filters

 

  used to preprocess data prior to classification or learning 

  supports both supervised and unsupervised filters 

 configurable depending on filter type 

All of WEKA’s filters are available. 

3.4.4. Classifiers 

 

 supports all classification algorithms presented in the textbook 

  parameters are configurable depending on classification algorithm 

All of WEKA’s classifiers are available. 
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3.4.5. Clusterers 

 

 supports all clustering algorithms presented in the textbook 

  parameters are configurable depending on clustering algorithm 

All of WEKA’s clusterers are available 

 

3.4.6. Evaluation 

 

- used to configure both inputs to and outputs from algorithms 

- supports various algorithm performance evaluators 

-  output format fairly “standardized” 

• TrainingSetMaker - make a data set into a training set 

 

• TestSetMaker - make a data set into a test set. 

• CrossValidationFoldMaker - split any data set, training set or test set into 

folds. 

• TrainTestSplitMaker - split any data set, training set or test set into a training 

set and a test set. 

• ClassAssigner - assign a column to be the class for any data set, training set or 

test set. 

• ClassValuePicker - choose a class value to be considered as the “positive” 

class. This is useful when generating data for ROC style curves (see 

ModelPerformanceChart below and example 4.2). 

• ClassifierPerformanceEvaluator - evaluate the performance of batch 

trained/tested classifiers. 

• IncrementalClassifierEvaluator - evaluate the performance of incrementally 

trained classifiers. 

• ClustererPerformanceEvaluator - evaluate the performance of batch 

trained/tested clusters. 
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• PredictionAppender - append classifier predictions to a test set. For discrete 

class problems, can either append predicted class labels or probability 

distributions. 

 

3.4.7. Visualization 

 

 used to visually display outputs 

 supports performance and summaries  

 comparable to options from Explorer interface 

• DataVisualizer - component that can pop up a panel for visualizing data in a 

single large 2D scatter plot. 

• ScatterPlotMatrix - component that can pop up a panel containing a matrix of 

small scatter plots (clickingon a small plot pops up a large scatter plot). 

 

• AttributeSummarizer - component that can pop up a panel containing a matrix 

of histogram plots - one for each of the attributes in the input data. 

• ModelPerformanceChart - component that can pop up a panel for visualizing 

threshold curves. 

• TextViewer - component for showing textual data. Can show data sets, 

classification performance statistics 

• GraphViewer - component that can pop up a panel for visualizing tree based 

models. 

• StripChart - component that can pop up a panel that displays a scrolling plot of 

data (used for viewing the online performance of incremental classifiers). 

 

Example1: Decision Tree Classifier 

1. Specify a data source 

2. Specify which attribute is the class 

3. Specify cross validation 

4. Specify decision tree algorithm 
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5. Specify evaluation 

6. Specify evaluation output 

7. To allow viewing of decision trees per fold 

8. Run experiments 

 

 

Example2: Incremental Learning 
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Applications 

Weka was originally developed for the purpose of processing agricultural data, motivated by 

the importance of this application area in New Zealand. However, the machine learning 

methods and data engineering capability item bodies have grown so quickly, and so radically, 

that the workbench is now commonly used in all forms of data mining applications—from 

bioinformatics to competition datasets issued by major conferences such as Knowledge 

Discovery in Databases. 

They worked on: 

- predicting the internal bruising sustained by different varieties of apple as they make 

their way through a packing-house on a conveyor belt; 

- predicting, in real time, the quality of a mushroom from a photograph in order to 

provide automatic grading; 

- classifying kiwifruit vines into twelve classes, based on visible-NIR spectra, in order 

to determine which of twelve pre-harvest fruit management treatments has been 

applied to the vines; 

 

Weka has been used extensively in the field of bioinformatics. Published studies include 

automated protein annotation, probe selection for gene expression arrays , plant genotype 

discrimination , and classifying gene expression profiles and extracting rules from them. Text 

mining is another major field of application, and the workbench has been used to 
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automatically extract key phrases from text, and for document categorization, and word sense 

disambiguation. There are many projects that extend or wrap WEKA in some fashion. There 

are 46 such projects listed on the Related Projects web page of the WEKA site3. Some of 

these include: 

• Systems for natural language processing. There are a number of tools that use WEKA for 

natural language processing: GATE is a NLP workbench ; Balie performs language 

identification, tokenization, sentence boundary detection and named-entity recognition; 

Senseval-2 is a system for word sense disambiguation; Kea is a system for automatic 

keyphrase extraction . 

• Knowledge discovery in biology. Several tools using or based on WEKA have been 

developed to aid data analysis in biological applications: BioWEKA is an extension to 

WEKA for tasks in biology, bioinformatics, and biochemistry; the Epitopes Toolkit (EpiT) is 

a platform based on WEKA for developing epitope prediction tools; maxdView and Mayday 

provide visualization and analysis of microarray data. 

• Distributed and parallel data mining. There are a number of projects that have extended 

WEKA for distributed data mining; Weka-Parallel provides a distributed cross-validation 

facility; GridWeka provides distributed scoring and testing as well as cross validation; 

FAEHIM andWeka4WS make WEKA available as a web service. 

• Open-source data mining systems. Several well known open-source data mining systems 

provide plugins to allow access to WEKA’s algorithms. The Konstanz Information Miner 

(KNIME) and RapidMiner are two such systems. The R statistical computing environment 

also provides an interface toWEKA through the Rweka package. 

• Scientific workflow environment. The Kepler Weka project integrates all the functionality of 

WEKA into the Kepler open-source scientific workflow platform. 

 Many future applications will be developed in an online setting. Recent work on data streams 

has enabled machine learning algorithms to be used in situations where a potentially infinite 

source of data is available. These are common in manufacturing industries with 24/7 

processing. The challenge is to develop models that constantly monitor data in order to detect 

changes from the steady state. Such changes may indicate failure in the process, providing 

operators with warning signals that equipment needs re-calibrating or replacing. 

 

 

 



 

56 
 

NAIVE-BAYES CLASSIFICATION ALGORITHM 

 

1. Introduction to Bayesian Classification 

The Bayesian Classification represents a supervised learning method as well as a statistical 

method for classification. Assumes an underlying probabilistic model and it allows us to 

capture uncertainty about the model in a principled way by determining probabilities of the 

outcomes. It can solve diagnostic and predictive problems. This Classification is named after 

Thomas Bayes ( 1702-1761), who proposed the Bayes Theorem. 

Bayesian classification provides practical learning algorithms and prior knowledge and 

observed data can be combined. Bayesian Classification provides a useful perspective for 

understanding and evaluating many learning algorithms. It calculates explicit probabilities for 

hypothesis and it is robust to noise in input data. 

Uses of Naive Bayes classification: 

1. Naive Bayes text classification 

(http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html) 

The Bayesian classification is used as a probabilistic learning method (Naive Bayes text 

classification). Naive Bayes classifiers are among the most successful known algorithms for 

learning to classify text documents. 

2. Spam filtering (http://en.wikipedia.org/wiki/Bayesian_spam_filtering) 

Spam filtering is the best known use of Naive Bayesian text classification. It makes use of a 

naive Bayes classifier to identify spam e-mail. Bayesian spam filtering has become a popular 

mechanism to distinguish illegitimate spam email from legitimate email (sometimes called 

"ham" or "bacn").[4] Many modern mail clients implement Bayesian spam filtering. Users 

can also install separate email filtering programs. Server-side email filters, such as DSPAM, 

SpamAssassin, SpamBayes, Bogofilter and ASSP, make use of Bayesian spam filtering 

techniques, and the functionality is sometimes embedded 

within mail server software itself. 

3. Hybrid Recommender System Using Naive Bayes Classifier and Collaborative Filtering 

(http://eprints.ecs.soton.ac.uk/18483/) 

Recommender Systems apply machine learning and data mining techniques for filtering 

unseen information and can predict whether a user would like a given resource. It is proposed 

a unique switching hybrid recommendation approach by combining a Naïve Bayes 

classification approach with the collaborative filtering. Experimental results on two different 
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data sets, show that the proposed algorithm is scalable and provide better performance in 

terms of accuracy and coverage–than other algorithms while at the same time eliminates 

some recorded problems with the recommender systems. 

4. Online applications (http://www.convo.co.uk/x02/) 

This online application has been set up as a simple example of supervised machine learning 

and affective computing. Using a training set of examples which reflect nice, nasty or neutral 

sentiments, we're training Ditto to distinguish between them. Simple Emotion Modelling, 

combines a statistically based classifier with a dynamical model. The Naive Bayes classifier 

employs single words and word pairs as features. It allocates user utterances into nice, nasty 

and neutral classes, labelled +1, -1 and 0 respectively. This numerical output drives a simple 

first-order dynamical system, whose state represents the simulated emotional state of the 

experiment's personification, Ditto the donkey. 

1.1. Independence 

1.1.1. Example: 

Suppose there are two events: 

 M: Manuela teaches the class (otherwise it’s Andrew) 

  S: It is sunny 

“The sunshine levels do not depend on and do not influence who is teaching.” 

1.1.2 Theory: 

From P(S | M) = P(S), the rules of probability imply: 

 P(~S | M) = P(~S) 

  P(M | S) = P(M) 

  P(M ^ S) = P(M) P(S) 

  P(~M ^ S) = P(~M) P(S) 

  P(M^~S) = P(M)P(~S) 

  P(~M^~S) = P(~M)P(~S) 

1.2.3. Theory applied on previous example: 

“The sunshine levels do not depend on and do not influence who is teaching.” can be 

specified 

very simply: 

P(S | M) = P(S) 

“Two events A and B are statistically independent if the probability of A is the same value 

when B occurs, when B does not occur or when nothing is known about the occurrence of B” 
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1.2. Conditional Probability 

1.2.1. Simple Example: 

 

H = “Have a headache” 

F = “Coming down with Flu” 

P(H) = 1/10 

P(F) = 1/40 

P(H|F) = ½ 

“Headaches are rare and flu is rarer, but if you’re coming down with ‘flu there’s a 50-50 

chance 

you will have a headache.” 

P(H|F) = Fraction of flu-inflicted worlds in which you have a headache = 

   #worlds with flu and headache   Area of “H and F” region   P(H ^ F) 

= ------------------------------------         = ------------------------------------- =  ----------- 

#worlds with flu    Area of “F” region    P(F) 

 

1.2.2. Theory: 

P(A|B) = Fraction of worlds in which B is true that also have A true 

 

      P(A ^ B) 

P(A|B) = ------------------ 

         P(B) 

 

Corollary: 

P(A ^ B) = P(A|B) P(B) 

P(A|B)+P(¬A|B) = 1 

∑ 𝑃(𝐴 = 𝑣𝑘|𝐵)

𝑛

𝑘=1

= 1 

P(A| B)+P(¬A| B) =1 
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1.2.3. Detailed Example 

 M : Manuela teaches the class 

  S : It is sunny 

  L : The lecturer arrives slightly late. 

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to 

arrive late than Manuela. 

 

Let us begin with writing down the knowledge: 

P(S ½ M) = P(S), P(S) = 0.3, P(M) = 0.6 

Lateness is not independent of the weather and is not independent of the lecturer. Therefore 

Lateness is dependant on both weather and lecturer 

 

 

 

 

 

1.3. Conditional Independence 

1.3.1. Example: 

Suppose we have these three events: 

  M : Lecture taught by Manuela 

  L : Lecturer arrives late 

  R : Lecture concerns robots 
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Suppose: 

Andrew has a higher chance of being late than Manuela. 

Andrew has a higher chance of giving robotics lectures. 

Once you know who the lecturer is, then whether they arrive late doesn’t affect 

whether the lecture concerns robots. 

1.3.2. Theory: 

R and L are conditionally independent given M if for all x,y,z in {T,F}: 

P(R=x | M=y ^ L=z) = P(R=x | M=y) 

More generally: 

Let S1 and S2 and S3 be sets of variables. 

Set-of-variables S1 and set-of-variables S2 are conditionally independent given S3 if 

for all assignments of values to the variables in the sets, P(S1’s assignments ½ S2’s 

assignments & S3’
s
 assignments)= P(S1’

s
 assignments | S3’

s
 assignments) 

P(A|B) = P(A ^B)/P(B) 

Therefore  P(A^B) = P(A|B).P(B) – also known as Chain Rule 

Also  P(A^B) = P(B|A).P(A) 

Therefore  P(A|B) = P(B|A).P(A)/P(B) 

P(A,B|C) = P(A^B^C)/P(C) 

= P(A|B,C).P(B^C)/P(C ) – applying chain rule 

= P(A|B,C).P(B|C) 

= P(A|C).P(B|C) , If A and B are conditionally independent given C. 

This can be extended for n values as P(A1,A2…An|C) = P(A1|C).P(A2|C)…P(An|C) if 

A1,A2…An are conditionally independent given C. 

 

1.3.3. Theory applied on previous example: 

For the previous example, we can use the following notations: 

P(R | M,L) = P(R | M) and P(R | ~M,L) = P(R | ~M) 

We express this in the following way: 

“R and L are conditionally independent given M” 

 

2. Bayes Theorem 
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Bayesian reasoning is applied to decision making and inferential statistics that deals with 

probability inference. It is used the knowledge of prior events to predict future events. 

Example: Predicting the color of marbles in a basket 

2.1. Example: 

 

Table1: Data table 

 

2.2. Theory: 

The Bayes Theorem: 

P(h/D)  =   P(D/h) P(h) 

P(D) 

P(h) : Prior probability of hypothesis h 

P(D) : Prior probability of training data D 

P(h/D) : Probability of h given D 

P(D/h) : Probability of D given h 
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2.3. Theory applied on previous example: 

 D : 35 year old customer with an income of $50,000 PA 

 h : Hypothesis that our customer will buy our computer 

P(h/D) : Probability that customer D will buy our computer given that we know his age 

and income 

P(h) : Probability that any customer will buy our computer regardless of age (Prior 

Probability) 

P(D/h) : Probability that the customer is 35 yrs old and earns $50,000, given that he has 

bought our computer (Posterior Probability) 

P(D) : Probability that a person from our set of customers is 35 yrs old and earns $50,000 

 

2.4. Maximum A Posteriori (MAP) Hypothesis 

2.4.1. Example: 

 

h1: Customer buys a computer = Yes 

h2 : Customer buys a computer = No 

where h1 and h2 are subsets of our Hypothesis Space ‘H’ 

P(h/D) (Final Outcome) = arg max{ P( D/h1) P(h1) , P(D/h2) P(h2)} 

P(D) can be ignored as it is the same for both the terms 

 

2.4.2. Theory: 

 

Generally we want the most probable hypothesis given the training data hMAP = arg max 

P(h/D) (where h belongs to H and H is the hypothesis space) 

hMAP = arg max P(D/h) P(h) 

       P(D) 

hMAP = arg max P(D/h) P(h) 
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2.5. Maximum Likelihood (ML) Hypothesis 

2.5.1. Example: 

 

Table 2 

 

 

2.5.2. Theory: 

If we assume P(hi) = P(hj) where the calculated probabilities amount to the same. Further 

simplification leads to: 

hML = arg max P(D/hi) (where hi belongs to H) 

2.5.3. Theory applied on previous example: 

P (buys computer = yes) = 5/10 = 0.5 

P (buys computer = no) = 5/10 = 0.5 

P (customer is 35 yrs & earns $50,000) = 4/10 = 0.4 
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P (customer is 35 yrs & earns $50,000 / buys computer = yes) = 3/5 =0.6 

P (customer is 35 yrs & earns $50,000 / buys computer = no) = 1/5 = 0.2 

 

Customer buys a computer P(h1/D) = P(h1) * P (D/ h1) / P(D) = 0.5 * 0.6 / 0.4 

Customer does not buy a computer P(h2/D) = P(h2) * P (D/ h2) / P(D) = 0.5 * 0.2 / 0.4 

Final Outcome = arg max {P(h1/D) , P(h2/D)} = max(0.6, 0.2) 

=> Customer buys a computer 

3. Naïve Bayesian Classification 

It is based on the Bayesian theorem It is particularly suited when the dimensionality of the 

inputs is high. Parameter estimation for naive Bayes models uses the method of maximum 

likelihood. In spite over-simplified assumptions, it often performs better in many complex 

realworld situations. Advantage: Requires a small amount of training data to estimate the 

parameters 

3.1. Example 

 

 

X = ( age= youth, income = medium, student = yes, credit_rating = fair) 

A person belonging to tuple X will buy a computer? 

3.2.Theory: 

Derivation: 

D : Set of tuples 

 Each Tuple is an ‘n’ dimensional attribute vector 



 

65 
 

  X : (x1,x2,x3,…. xn) 

Let there be ‘m’ Classes : C1,C2,C3…Cm 

Naïve Bayes classifier predicts X belongs to Class Ci iff 

 P (Ci/X) > P(Cj/X) for 1<= j <= m , j <> i 

Maximum Posteriori Hypothesis 

  P(Ci/X) = P(X/Ci) P(Ci) / P(X) 

  Maximize P(X/Ci) P(Ci) as P(X) is constant 

With many attributes, it is computationally expensive to evaluate P(X/Ci). 

Naïve Assumption of “class conditional independence” 

𝑃 (
𝑋

. 𝐶𝑖
) = ∏ 𝑃(𝑥𝑘/𝐶𝑖)

𝑛

𝑘=1

 

P(X/Ci) = P(x1/Ci) * P(x2/Ci) *…* P(xn/ Ci) 

3.3. Theory applied on previous example: 

P(C1) = P(buys_computer = yes) = 9/14 =0.643 

P(C2) = P(buys_computer = no) = 5/14= 0.357 

P(age=youth /buys_computer = yes) = 2/9 =0.222 

P(age=youth /buys_computer = no) = 3/5 =0.600 

P(income=medium /buys_computer = yes) = 4/9 =0.444 

P(income=medium /buys_computer = no) = 2/5 =0.400 

P(student=yes /buys_computer = yes) = 6/9 =0.667 

P(student=yes/buys_computer = no) = 1/5 =0.200 

P(credit rating=fair /buys_computer = yes) = 6/9 =0.667 

P(credit rating=fair /buys_computer = no) = 2/5 =0.400 

P(X/Buys a computer = yes) = P(age=youth /buys_computer = yes) * P(income=medium 

/buys_computer = yes) * P(student=yes /buys_computer = yes) * P(credit rating=fair 

/buys_computer = yes) = 0.222 * 0.444 * 0.667 * 0.667 = 0.044 

P(X/Buys a computer = No) = 0.600 * 0.400 * 0.200 * 0.400 = 0.019 

Find class Ci that Maximizes P(X/Ci) * P(Ci) 

=>P(X/Buys a computer = yes) * P(buys_computer = yes) = 0.028 

=>P(X/Buys a computer = No) * P(buys_computer = no) = 0.007 

Prediction : Buys a computer for Tuple X 
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4. Sample running example with weka 

4.1. Bayesian Network Classifiers in Weka 

Let U = {x1,... ,xn}, n ~ 1 be a set of variables. A Bayesian network B over a set of variables 

U is a network structure BS, which is a directed acyclic graph (DAG) over U and a set of 

probability tables BP = {p(u|pa(u))|u 2 U} where pa(u) is the set of parents of u in BS. A 

Bayesian network represents a probability distributions P(U) = Q u2U p(u|pa(u)). 

Below, a Bayesian network is shown for the variables in the iris data set. Note that the links 

between the nodes class, petal length and petal width do not form a directed cycle, so the 

graph is a proper DAG. 

4.2. Conditional independence test based structure learning 

Conditional independence tests in Weka are slightly different from the standard tests 

described 

in the literature. To test whether variables x and y are conditionally independent given a set 

of variables Z, a network structure with arrows "zÎzz ® y is compared with one with arrows 

{x® y} È "zÎzz ®.y. A test is performed. 

At the moment, only the ICS [9]and CI algorithm are implemented. The ICS algorithm makes 

two steps, first find a skeleton (the undirected graph with edges iff there is an arrow in 

network structure) and second direct all the edges in the skeleton to get a DAG. 

Starting with a complete undirected graph, we try to find conditional independencies <x, y | 

Z> in the data. For each pair of nodes x, y, we consider sets Z starting with cardinality 0, then 

1 up to a user defined maximum. Further-more, the set Z is a subset of nodes that are 

neighbors of both x and y. If an independency is identified, the edge between x and y is 

removed from the skeleton. 

The first step in directing arrows is to check for every configuration x - -z - - y where x and y 

not connected in the skeleton whether z is in the set Z of variables that justified removing the 

link between x and y (cached in the first step). I f z is not in Z, we can assign direction x ® z 

¬y.  

Finally, a set of graphical rules is applied to direct the remaining arrows. 
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The ICS algorithm comes with the following options. 

Since the ICS algorithm is focused on recovering causal structure, instead of finding the 

optimal classifier, the Markov blanket correction can be made afterwards. 

Specific options: 

The maxCardinality option determines the largest subset of Z to be considered in conditional 

independence tests <x, y|Z>. The scoreType option is used to select the scoring metric. 

5. Exercises 

Implement, test and interpret the results for Naïve Bayes algorithm for the following 

problems, using the attached input files 

5.1. Being given the following binary files (imagini.zip), which represent the classes for 1, 2 

and 3, you must find out the class of a digit in an image. 

 

There will be used as attributes white pixels (value 255) and the positions of their appearance. 

Algorithm: 

Step 1: It is loaded the image which will be classified as being ONE, TWO or THREE 

Step 2: There are loaded the images found in the folder images. The name of the files 

belonging to class ONE are: “image1_*.jpg”, the ones belonging to class TWO are: 

“image2_*.jpg” and the ones for class THREE are : “image3_*.jpg”. 

Step3: It is determined the a priori probability for each class: 

P(UNU) = NrTemplateInClassONE / NumberTotalTemplates 

P(DOI) = NrTemplateInClassTWO / NumberTotalTemplates 

P(TREI) = NrTemplateInClassTHREE / NumberTotalTemplates 

Step 4: It is determined the probability that the image from the Step 1 to be in class ONE, 

TWO or THREE. Let (i,j) be the position of a white pixel in the image. It is calculated the 

probability that the pixel having the coordinates (i, j) to be white for the class ONE, TWO 

and THREE. 
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count1i,j = 0 

for k = 1,n ; n – the number of images in class ONE 

if image1_k(i,j) = 255 then 

count1i,j = count1i,j + 1 

probability1(i,j) =count1i,j / NrTemplateInClassONE 

count2i,j = 0 

for k = 1,n ; n- the number of images in class TWO 

if image2_k(i,j) = 255 then 

count2i,j = count2i,j + 1 

probability2(i,j) =count2i,j / NrTemplateInClassTWO 

count3i,j = 0 

for k = 1,n ; n- the number of images in class THREE 

if image3_k(i,j) = 255 then 

count3i,j = count3i,j + 1 

probability 3(i,j) =count3i,j / NrTemplateInClassTHREE 

Step 5. 

The posteriori probability that the image in Step 1 to be in class ONE is: 

P(T|ONE) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the image 

from Step1 

Step 6. 

The posteriori probability that the image in Step 1 to be in class TWO is: 

P(T|TWO) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the image 

from Step1 

Step 7: 

The posteriori probability that the image in Step 1 to be in class THREE is: 

P(T|THREE) = average (probabilitate1(i,j)); (i, j) – the position of the white pixels in the 

image from Step1 

Step 8: 

It is determined the probability P for each image class and it is assigned the image from Step1 

to the class of images that has the greatest probability. 

P(ONE|T) = P(T| ONE)*P(ONE) 

P(TWO|T) = P(T| TWO)*P(TWO) 

P(THREE|T) = P(T| THREE)*P(THREE) 
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In order to load an image and to load pixels from an image in an array, you can use the 

following java code: 

import java.awt.*; 

import java.awt.image.*; 

import java.io.*; 

import javax.swing.*; 

import java.util.*; 

public class CImagesLoad { 

Vector<Image> images1 = new Vector<Image>(); 

Vector<Image> images2 = new Vector<Image>(); 

Vector<Image> images3 = new Vector<Image>(); 

public String getFile(boolean isSaveDialog) 

{ 

String currentDirectoryName = new File("").getAbsolutePath() 

+File.separator; 

try{ 

JFileChooser fc = new JFileChooser(new File(new 

File(currentDirectoryName).getParent())); 

int result = 0; 

if(!isSaveDialog) 

result = fc.showOpenDialog(null); 

else 

result = fc.showSaveDialog(null); 

if(result==JFileChooser.CANCEL_OPTION) return null; 

else { //if(result==JFileChooser.APPROVE_OPTION){ 

return fc.getSelectedFile().getAbsolutePath(); 

} 

} 

catch(Exception e) 

{ 

return null; 

} 

} 

public void load_images (int template){ 
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String f = getFile(false); 

if (f==null) 

{ 

return; 

} 

int k = 1; 

while (true) 

{ 

String curent = new java.io.File (f).getAbsolutePath (); 

int pos = curent.lastIndexOf ("\\"); 

curent = curent.substring (0, pos); 

if (k < 10) 

{ 

curent += "\\image" + template + "_0" + k + ".jpg"; 

} 

else 

{ 

curent += "\\image" + template + "_" + k + ".jpg"; 

} 

Image img = null; 

img = new javax.swing.ImageIcon(curent).getImage(); 

if(img==null || img.getWidth(null)<=0 ||img.getHeight(null)<=0) 

{ 

System.out.println("The file \n" + f.toString() + "\nhas an unsupported 

image format"); 

break; 

} 

else 

{ 

k++; 

switch (template) 

{ 

case 1: 

images1.add (img); 
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break; 

case 2: 

images2.add (img); 

break; 

case 3: 

images3.add (img); 

break; 

default: 

System.out.println("Other class"); 

break; 

} 

} 

} 

} 

public void load_pixels (Image image) 

{ 

int width = image.getWidth(null); 

int height = image.getHeight(null); 

// Allocate buffer to hold the image's pixels 

int pixels[] = new int[width * height]; 

// Grab pixels 

PixelGrabber pg = new PixelGrabber (image, 0, 0, width, height, 

pixels, 0, width); 

try 

{ 

pg.grabPixels(); 

} 

catch (InterruptedException e) 

{ 

System.out.println ("Error image loading"); 

} 

} 

} 

5.2. Modify 5.1 in order to classify images that are belonging to class 4. 
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5.3. Implement the example 3.1 for the following tuple X: 

X = ( age= youth, income = high, student = no, credit_rating = fair) 

Find out if a person belonging to tuple X will buy a computer 
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Classification with Decision Trees 

Purpose: 

 Understand how to build simple baseline models for classification; 

 Understand how to build decision trees for classification; 

 Understand how different parameters for decision tree algorithms affect their 

output; 

 Assess the accuracy of several models using cross-validation; 

 Communicate the information captured in the decision tree model in well written 

English. 

 

1. Theoretical Aspects 

Classification is one of the major data mining tasks. Although this task is accomplished by 

generating a predictive model of data, interpreting the model frequently provides information 

for discriminating labeled classes in data. Decision trees provide a predictive model that is 

easy to interpret to provide a description of data. 

In order to believe any predictive model, the accuracy of the model must be estimated. 

Several methods for evaluating the accuracy of models will be discussed during class 

lectures. For this assignment, 10-fold cross validation will be used for model assessment. The 

data mining task you are to perform is to provide descriptions of acceptable and unacceptable 

labor contracts contained in labor.arff. You are to back up you description by the evidence 

you collect by building decision tree models of the data. 

 

1.1 Entropy 

Putting together a decision tree is all a matter of choosing which attribute to test at each node 

in the tree. We shall define a measure called information gain which will be used to decide 

which attribute to test at each node. Information gain is itself calculated using a measure 

called entropy, which we first define for the case of a binary decision problem and then 

define for the general case. 

Given a binary categorization, C, and a set of examples, S, for which the proportion of 

examples categorized as positive by C is p+ and the proportion of examples categorized as 

negative by C is p-, then the entropy of S is: 
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The reason we defined entropy first for a binary decision problem is because it is easier to get 

an impression of what it is trying to calculate. 

Given an arbitrary categorization, C into categories c1, ..., cn, and a set of examples, S, for 

which the proportion of examples in ci is pi, then the entropy of S is: 

 

This measure satisfies our criteria, because of the -p*log2(p) construction: when p gets close 

to zero (i.e., the category has only a few examples in it), then the log(p) becomes a big 

negative number, but the p part dominates the calculation, so the entropy works out to be 

nearly zero. Remembering that entropy calculates the disorder in the data, this low score is 

good, as it reflects our desire to reward categories with few examples in. Similarly, if p gets 

close to 1 (i.e., the category has most of the examples in), then the log(p) part gets very close 

to zero, and it is this which dominates the calculation, so the overall value gets close to zero. 

Hence we see that both when the category is nearly - or completely - empty, or when the 

category nearly contains – or completely contains - all the examples, the score for the 

category gets close to zero, which models what we wanted it to. Note that 0*ln(0) is taken to 

be zero by convention. 

 

1.2 Information gain 

We now return to the problem of trying to determine the best attribute to choose for a 

particular node in a tree. The following measure calculates a numerical value for a given 

attribute, A, with respect to a set of examples, S. Note that the values of attribute A will range 

over a set of possibilities which we call Values(A), and that, for a particular value from that 

set, v, we write Sv for the set of examples which have value v for attribute A. 

The information gain of attribute A, relative to a collection of examples, S, is calculated as: 

 

 

The information gain of an attribute can be seen as the expected reduction in entropy caused 

by knowing the value of attribute A. 
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1.3 Sample calculation on Entropy and Information gain 

Instances: 

Weekend  Weather  Parents  Money  Decision (Category) 

W1   Sunny   Yes   Rich   Cinema 

W2   Sunny   No   Rich   Tennis 

W3   Windy   Yes   Rich   Cinema 

W4   Rainy   Yes   Poor   Cinema 

W5   Rainy   No   Rich   Stay in 

W6   Rainy   Yes   Poor   Cinema 

W7   Windy   No   Poor   Cinema 

W8   Windy   No   Rich   Shopping 

W9   Windy   Yes   Rich   Cinema 

W10   Sunny   No   Rich   Tennis 

The first thing we need to do is work out which attribute will be put into the node at the top 

of our tree: weather, parents or money. To do this, we need to calculate: 
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2. Decision Tree Induction Algorithm 

2.1 ID3 (Iterative Dichotomiser 3) 

The ID3 algorithm can be summarized as follows: 

1. Take all unused attributes and count their entropy concerning test samples 

2. Choose attribute for which entropy is maximum 

3. Make node containing that attribute 

 

The actual algorithm is as follows: 

ID3 (Examples, Target_Attribute, Attributes) 

 Create a root node for the tree 

 If all examples are positive, Return the single 

 If all examples are negative, Return the single 

 If number of predicting attributes is empty, then Return the single node tree 

label = most common value of the target attribute in the examples. 

 Otherwise Begin 

o A = The Attribute that best classifies examples. 

o Decision Tree attribute for Root = A. 

o For each possible value, vi, of A 

 + Add a new tree branch below Root, corresponding to the test A = vi. 

 + Let Examples(vi), be the subset of examples that have the value vi for 

A 

 + If Examples(vi) is empty 

 Then below this new branch add a leaf node with label = 

most common target value in the examples 

 Else below this new branch add the subtree ID3 

(Examples(vi), Target_Attribute, 

Attributes – {A}) 

* End 

* Return Root 
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2.2 C4.5 Algorithm 

C4.5 builds decision trees from a set of training data in the same way as ID3, using the 

concept of information entropy. The training data is a set S = s1,s2,... of already classified 

samples. Each sample si = x1,x2,... is a vector where x1,x2,... represent attributes or features 

of the sample. The training data is augmented with a vector C = c1,c2,... where c1,c2,... 

represent the class to which each sample belongs. 

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its 

set of samples into subsets enriched in one class or the other. Its criterion is the normalized 

information gain (difference in entropy) that results from choosing an attribute for splitting 

the data. The attribute with the highest normalized information gain is chosen to make the 

decision. 

The C4.5 algorithm then recurses on the smaller sublists. 

This algorithm has a few base cases. 

 All the samples in the list belong to the same class. When this happens, it simply 

creates a leaf node for the decision tree saying to choose that class. 

 None of the features provide any information gain. In this case, C4.5 creates a 

decision node higher up the tree using the expected value of the class. 

 Instance of previously-unseen class encountered. Again, C4.5 creates a decision 

node higher up the tree using the expected value. 

In pseudocode, the algorithm is: 

 Check for base cases 

 For each attribute a 

o Find the normalized information gain from splitting on a 

 Let a_best be the attribute with the highest normalized information gain 

 Create a decision node that splits on a_best 

 Recurse on the sublists obtained by splitting on a_best, and add those nodes as 

children of node 

 

3. Build Baseline Classification Models 

A baseline model is one that can be used to evaluate the success of your target model, in this 

case a decision tree model. Baseline models are typically simple, an inaccurate, but 

occasionally data is so simple to describe, attempting to use a complex model results in worse 

behaviour than a simple model. 
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In this section, you will build and record the accuracy to two baseline modes: ZeroR and 

OneR. The ZeroR model simply classifies every data item in the same class. For example, a 

ZeroR model may classify all loan applications as high risk without even considering the 

attributes of each data instance. The OneR model seeks to generate classification rules using 

a single attribute only. 

1. Start Weka. On studsys, this can be accomplished with the command: 

java -jar …/weka-3-2-3/weka.jar 

2. Open Weka’s Explorer interface. 

3. Open labor.arff from the Explorer interface. (You may also want to open this file in a 

text editor). 

4. Typically, at this point, you would record a summary of your data. 

5. Click on the Classify tab in the Weka window. 

6. The ZeroR classifier should be selected, but if it is not, click on the rectangle 

underneath the word Classifier and select the ZeroR classifier from the menu that 

pops up. 

7. Select the Cross-validation radio button from the Test options. Use 10 folds. 

8. Make sure that the class attribute is selected as the classification label. 

9. Click the Start button to build and evaluate the model. Record the results in the output 

window. 

10. Repeat the process, but select the OneR classifier from the Classifier menu using the 

default minimum bucket size of 6. 

 

4. Generating Decision Trees (example 1) 

Once you generate your baseline models and estimate their accuracy, you can create the 

target model of interest. Even though you will be creating a decision tree model, the 

algorithm you will use has several parameters. You need to modify the parameters in order to 

generate a reasonable model. Each time you modify a parameter, you might end up with a 

different model. 

1. Before generating a decision tree, set accuracy goals for you classifier based on the 

accuracy of your baseline models. 

2. Select the J48 algorithm for creating decision trees from the Classifier menu. Don’t 

use the PART version. 
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3. Generate decision trees for the following combinations of attributes: all false, 

binarySplits only true, reducedErrorPruning only true, subtreeRaising only true, 

unpruned only true, useLaplace only true. Record the resulting decision trees and their 

associated accuracy and error information. 

4. Generate decision trees with some combinations of the boolean parameters. Note that 

if you use reducedErrorPruning, the value of subtreeRaising is ignored. Again, record 

the results of each trial. 

5. Now, for your best model so far, attempt to find a combination of confidenceFactor, 

minNumObj, numFolds that will improve your results. Use your understanding of the 

theory and documentation to make good selections. Record the results of each 

attempt. 

 

5. Generating Decision Trees (example 2) 

1. Start Weka. On studsys, this can be accomplished with the command: 

java -jar …/weka-3-2-3/weka.jar 

2. Open Weka’s Explorer interface. 

3. Open credit.arff from the Explorer interface. (You may also want to open this file in a 

text editor). 

4. Run a decision tree classifier over the data by selecting classifiers > trees > J48 under 

the Classify tab. 

5. Set a confidenceFactor of 0.2 in the options dialog. 

6. Use a test percentage split of 90%. 

Observe the output of the classifier. The full decision tree is output for your perusal; you may 

need to scroll up for this. The tree may also be viewed in graphical form by right-clicking the 

run in the Result list at the bottom-left and selecting Visualize tree, although it may be very 

cluttered for large trees. 

 How would you assess the performance of the classifier? Hint: check the number of 

good and bad cases in the test sample (e.g. using the confusion matrix) 

 Looking at the decision tree itself, are the rules it applies sensible? Are there any 

branches which appear absurd? 

 What is the effect of the confidenceFactor option? Try increasing or decreasing the 

value of this option and observe the results. 
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For comparison, we also learn a decision stump. This is a decision tree with only a single 

node: 

- Select the DecisionStump classifier. 

- Select Cross-validation with 10 folds for the test option. 

Now build the classifier, and observe the results: 

- What single attribute does the algorithm use to make its decision? Do you expect this 

to be useful in its own right? Hint: visualisation could assist here. 

- How do the results compare to that of the J48 tree? Is this what we would expect? 

- Is the stump actually discriminating between anything? Hint: return to the Preprocess 

tab and observe the distribution of the Approve attribute. If 

- 70% of applications are approved and 30% are not, how do we make a classifier that 

is 70% accurate? 

 

6. Assignments 

1. What are acceptable and unacceptable labor contracts according to your results? 

2. Compare and contrast the pruned and unpruned trees you generated. 

3. Do you feel your best tree is overfitting the data? Why or why not? 

4. Which class is generally better recognized by the decision trees? 

5. Decision trees are limited in the kinds classification problems they can solve 

6. Can you find evidence that would lead you to believe other classification techniques 

would perform worse, better, or equally as well on the labor data? 
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Flat Clustering – K-Means Algorithm 

Purpose: 

Clustering algorithms group a set of documents into subsets or clusters. The cluster algorithms’ 

goal is to create clusters that are coherent internally, but clearly different from each other. In 

other words, documents within a cluster should be as similar as possible; and documents in one 

cluster should be as dissimilar as possible from documents in other clusters. 

 

Clustering is the most common form of unsupervised learning. No supervision means that there 

is no human expert who has assigned documents to classes. In clustering, it is the distribution and 

makeup of the data that will determine cluster membership. An example is in figure 1. It is 

visually clear that there are three distinct clusters of points. The difference between clustering 

and classification may not seem great at first. After all, in both cases we have a partition of a set 

of documents into groups. But as we will see that problems are fundamentally different. 

Classification is a form of supervised learning. Our goal is to replicate a categorical distinction 

that a human supervisor imposes on the data. In unsupervised learning, of which clustering is the 

most important example, we have no such teacher to guide us. 

The key input to a clustering algorithm is the distance measure. In Figure 1, the distance measure 

is distance in the two-dimensional (2D) plane. This measure suggests three different clusters in 

the figure. In document clustering, the distance measure is often Euclidean distance. Different 

distance measures give rise to different clusterings. Thus, the distance measure is an important 

means by which we can influence the outcome of clustering. Flat clustering creates a flat set of 

clusters without any explicit structure that flat clustering would relate clusters to each other. 

 

Figure 1: An example of a data set with a clear cluster structure. 
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A second important distinction can be made between hard and soft clustering algorithms. Hard 

clustering computes a hard assignment -each document is a member of exactly one cluster. The 

assignment of soft clustering algorithms is soft - a document’s assignment is a distribution over 

all clusters. In a soft assignment, a document has fractional membership in several clusters. 

Latent semantic indexing, a form of dimensionality reduction, is a soft clustering algorithm. This 

laboratory motivates the use of clustering in information retrieval by introducing a number of 

applications, defines the problem we are trying to solve in clustering, and discusses measures for 

evaluating cluster quality. It then describes the K means flat clustering algorithm, and the 

expectation maximization (or EM) algorithm, a soft clustering algorithm. K-means is perhaps the 

most widely used flat clustering algorithm because of its simplicity and efficiency. The EM 

algorithm is a generalization of K-means and can be applied to a large variety of document 

representations and distributions. 

1. Problem statement 

We can define the goal in hard flat clustering as follows. Given 

(i) A set of documents D = {d1... dN}, 

(ii) A desired number of clusters K 

(iii) An objective function that evaluates the quality of a clustering we want to compute an 

assignment ; : D→{1, ... ,K} that minimizes (or, in other cases, maximizes) the objective 

function. In most cases, we also demand that ; is subjective, that is, that none of the K clusters is 

empty. The objective function is often defined in terms of similarity or distance between 

documents. Below, we will see that the objective in K-means clustering is to minimize the 

average distance between documents and their centroids or, equivalently, to maximize the 

similarity between documents and their centroids. We use both similarity and distance to talk 

about relatedness between documents. 

For documents, the type of similarity we want is usually topic similarity or high values on the 

same dimensions in the vector space model. For example, documents about China have high 

values on dimensions like Chinese, Beijing, and Mao whereas documents about the UK tend to 

have high values for London, Britain, and Queen. We approximate topic similarity with cosine 

similarity or Euclidean distance in vector space. If we intend to capture similarity of a type other 

than topic, for example, similarity of language, then a different representation may be 

appropriate. When computing topic similarity, stop word scan be safely ignored, but they are 

important cues for separating clusters of English (in which 'the' occurs frequently and 'la' 

infrequently) and French documents (in which 'the' occurs infrequently and 'la' frequently).  

A difficult issue in clustering is determining the number of clusters or cardinality of a clustering, 

which we denote by K. Often K is nothing more than a good guess based on experience or 

domain knowledge. But for K-means, we will also introduce a heuristic method for choosing K 

and an attempt to incorporate the selection of K into the objective function. Sometimes the 
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application puts constraints on the range of K. For example, the scatter-gather interface in 

Figure16.3 could not display more than about K = 10 clusters per layer because of the size and 

resolution of computer monitors in the early 1990s.  

Because our goal is to optimize an objective function, clustering is essentially a search problem. 

The brute force solution would be to enumerate all possible clusterings and pick the best. 

However, there are exponentially many partitions, so this approach is not feasible. For this 

reason, most flat clustering algorithms refine an initial partition ingiteratively. If the search starts 

at an unfavorable initial point, we may miss the global optimum. Finding a good starting point is 

therefore another important problem we have to solve in flat clustering. 

2. K-means 

K-means is the most important flat clustering algorithm. Its objective is to minimize the average 

squared Euclidean distance of documents from their cluster centers where a cluster center is 

defined as the mean or centroid #µ of the documents in a cluster ω: centroid 

𝜇(𝜔) =
1

𝜔
∑ �⃗�

 𝑥 𝜖𝜔

 

 The definition assumes that documents are represented as length normalized vectors in a real 

valued space in the familiar way. The ideal clustering K-means is a sphere with the centroid as its 

center of gravity. Ideally, the clusters should not overlap. Our desiderata for training set in 

clustering for which we know which documents should be in the same cluster classes in Rocchio 

classification were the same. The difference is that we have no labelled. 

 

 

 A measure of how well the centroids represent the members of their clusters is the residual sum 

of squares or RSS, the squared distance of each vector residual sum of squares from its centroids 

summed over all vectors: 
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𝑅𝑆𝑆𝑘 = ∑ |�⃗� − 𝜇 (𝜔𝑘)|2

 𝑥 𝜖𝜔𝑘

 

𝑅𝑆𝑆 = ∑ 𝑅𝑆𝑆𝑘

𝐾

𝑘=1

 

RSS is the objective function in K-means and our goal is to minimize it. Because N is fixed, 

minimizing RSS is equivalent to minimizing the average squared distance, a measure of how 

well centroids represent their documents. 

The first step of K-means is to select as initial cluster centers K randomly selected documents, 

the seeds. The algorithm then moves the cluster centers seed around in space to minimize RSS. 

As shown in Figure16.5, this is done iteratively by repeating two steps until a stopping criterion 

is met: Reassigning documents to the cluster with the closest centroid and recomputing each 

centroid based on the current members of its cluster. Figure16.6 shows snapshots from nine 

iterations of the K-means algorithm for a set of points. The “centroid” column of Table17.2 

(page364) shows examples of centroids. We can apply one of the following termination 

conditions. 

A fixed number of iterations I has been completed. This condition limits The runtime of the 

clustering algorithm, but in some cases the quality of the clustering will be poor because of an 

insufficient number of iterations. 
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Assignment of documents to clusters (the partitioning function ; ) does not change between 

iterations. Except for cases with a bad local minimum, this produces a good clustering, but run-

time may be unacceptably long. 

Terminate when the decrease in RSS falls below a threshold O. For small O, this indicates that 

we are close to convergence. Again, we need to combine it with a bound on the number of 

iterations to prevent very long run-times. We now show that K-means converges by proving that 

RSS monotonically decreases in each iteration. We will use decrease in the meaning decrease or 

does not change in this section. First, RSS decreases in the reassignment step; each vector is 

assigned to the closest centroid, so the distance it contributes to RSS decreases. Second, it 



 

86 
 

decreases in the re-computation step because the new centroid is the vector v for which RSSk 

reaches its minimum. 

𝑅𝑆𝑆𝑘 (
𝑣
→) = ∑ |�⃗� − �⃗�|2

 𝑥 𝜖𝜔𝑘

= ∑ ∑ (𝑣𝑚 − 𝑥𝑚)2

𝑀

𝑚=1 𝑥 𝜖𝜔𝑘

 

𝜕𝑅𝑆𝑆𝑘 (
𝑣
→)

𝜕𝑣𝑚
= ∑ 2(𝑣𝑚 − 𝑥𝑚)

 𝑥 𝜖𝜔𝑘

 

where xm and vm are the m
th

 components of their respective vectors. Setting the partial 

derivative to zero, we get: 

𝑣𝑚 =
1

|𝜔𝑘|
∑ 𝑥𝑚

 𝑥 𝜖𝜔𝑘

 

which is the component wise definition of the centroid. Thus, we minimize RSSk when the old 

centroid is replaced with the new centroid. RSS, the sum of the RSSk, must then also decrease 

during recomputation. Because there is only a finite set of possible clusterings, a monotonically 

decreasing algorithm will eventually arrive at a (local) minimum. Take care, however, to break 

ties consistently, for example, by assigning a document to the cluster with the lowest index if 

there are several equidistant centroids. Otherwise, the algorithm can cycle forever in a loop of 

clusterings that have the same cost. Although this proves the convergence of K-means, there is 

unfortunately no guarantee that a global minimum in the objective function will be reached. 

This is a particular problem if a document set contains many outliers, documents that are far from 

any other documents and therefore do not fit well into any cluster. Frequently, if an outlier is 

chosen as an initial seed, then no other vector is assigned to it during subsequent iterations. Thus, 

we end up with a singleton cluster (a cluster with only one document) even though there 

singleton cluster is probably a clustering with lower RSS. 

 

Figure 3: The outcome of clustering in K-means depends on the initial seeds. For seeds d2 and 

d5, K-means converges to {{d1,d2,d3}, {d4,d5,d6}},a suboptimal clustering. For seeds d2 and 

d3, it converges to {{d1,d2,d4,d5}, {d3,d6}},the global optimum for K = 2. 

Effective heuristics for seed selection include (i) excluding outliers from the seed set;(ii)trying 

out multiple starting points and choosing the clustering with lowest cost; and (iii) obtaining seeds 

from another method such as hierarchical clustering. Because deterministic hierarchical 
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clustering methods are more predictable than K-means, a hierarchical clustering of a small 

random sample of size iK (e.g., for i = 5 or i = 10) often provides good seeds. Other initialization 

methods compute seeds that are not selected from the vectors to be clustered. A robust method 

that works well for a large variety of document distributions is to select i (e.g., i = 10) random 

vectors for each cluster and use their centroid as the seed for this cluster. 

What is the time complexity of K-means? Most of the time is spent on computing vector 

distances. One such operation costs #(M). The reassignment step computes KN distances, so its 

overall complexity is #(KNM). In the re-computation step, each vector gets added to a centroid 

once, so the complexity of this step is #(NM). For a fixed number of iterations I, the overall 

complexity is therefore #(IKNM).Thus, K-means is linear in all relevant factors: iterations, 

number of clusters, number of vectors, and dimensionality of the space. This means that K-means 

is more efficient than the hierarchical algorithms. We had to fix the number of iterations I, which 

can be tricky in practice. But in most cases, K-means quickly reaches either complete 

convergence or a clustering that is close to convergence. In the latter case, a few documents 

would switch membership if further iterations were computed, but this has a small effect on the 

overall quality of the clustering. 

There is one subtlety in the preceding argument. Even a linear algorithm can be quite slow if one 

of the arguments of #(...) is large, and M usually is large. High dimensionality is not a problem 

for computing the distance of two documents. Their vectors are sparse, so that only a small 

fraction of the theoretically possible M component wise differences need to be computed. 

Centroids, however, are dense; they pool all terms that occur in any of the documents of their 

clusters. As a result, distance computations are time consuming in a naïve implementation of K-

means. But there are simple and effective heuristics for making centroid–document similarities as 

fast to compute as document document similarities. Truncating centroids to the most significant k 

terms (e.g., k = 1,000) hardly decreases cluster quality while achieving a significant speedup of 

the reassignment step.  

The same efficiency problem is addressed by K-medoids, a variant of K-means that computes 

medoids instead of centroids as cluster centers. We define the medoid of a cluster as the 

document vector that is closest to the medoid centroid. Since medoids are sparse document 

vectors, distance computations are fast.  

3. Working example using Weka  

1. Under the Process tab in Experimenter window, press Open File; 

2. Select <path_to_weka>/data/weather.arff or any other input data 

3. The attributes and their possible values for the relation weather are as follows:  

@attribute outlook {sunny, overcast, rainy} 

@attribute temperature real 

@attribute humidity real 
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@attribute windy {TRUE, FALSE} 

@attribute play {yes, no} 

4. Under the Cluster tab, tick off the “Use training set combo box” and press start. 

5. The output of the clustering is as follows: 

Number of iterations: 3 

Within cluster sum of squared errors: 16.237456311387238 

Missing values globally replaced with mean/mode 

Cluster centroids: 

Cluster# 

Attribute Full Data 0 1 

(14) (9) (5) 

============================================== 

outlook sunny sunny overcast 

temperature 73.5714 75.8889 69.4 

humidity 81.6429 84.1111 77.2 

windy FALSE FALSE TRUE 

play yes yes yes 

Hereafter, we have 2 clusters. The fist cluster's centroid is 

represented by the vector on the (0) column, the second cluster is 

represented by the vector on the last column, and the mean of all the 

data is presented on the first column. 

4. Real world clustering examples 

5.1 Clustering of wines 

Being given a database containing categories of wine, described by their properties, we should be 

able to create some clusters of wine categories, splitting them by major characteristics.  

 

Type Alcohol Malic_acid Ash Ash_alcalinity Magnesium Total_phenols 

A 14.23 1.71 2.43 15.6 127 2.8 

A 13.2 1.78 2.14 11.2 100 2.65 

A 13.16 2.36 2.67 18.6 101 2.8 

A 14.37 1.95 2.5 16.8 113 3.85 

A 13.24 2.59 2.87 21 118 2.8 

A 14.2 1.76 2.45 15.2 112 3.27 

A 14.39 1.87 2.45 14.6 96 2.5 

A 14.06 2.15 2.61 17.6 121 2.6 

A 14.83 1.64 2.17 14 97 2.8 

A 13.86 1.35 2.27 16 98 2.98 

A 14.1 2.16 2.3 18 105 2.95 

A 14.12 1.48 2.32 16.8 95 2.2 

A 13.75 1.73 2.41 16 89 2.6 
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http://www.resample.com/xlminer/help/kMClst/KMClust_ex.htm  

5.2 Clustering of students in a group  

Being given a database of students from a group, we should be able to create 4 clusters named :  

weak, Normal, Smart, Outstanding based on their grades on different disciplines. After the 

clustering is done, we can calculate the distance between a student and a cluster centroid 

 

6.   Assignments 

1. Being given the following relation: Student(Name, gradeMath, gradeProgramming, 

gradePhysics, gradeEnglish, gradeOverall), create an arff file containing at least 15 instances, 

load it into Weka, and apply k-Means clustering to it. Also cluster the instances without 

Weka, and compare the results. Pick different initial cluster centroids and compare the 

results.  

2. Also create an arff file according to the table with wine instances, load it into Weka and see 

the results after applying k-Means clustering. 

3. Develop a C program that clusters a planar set P of m=3k points into k triangles such that the 

sum of all triangle circumferences is minimized. 

4. Develop a C program that clusters m = nk points on a line into k clusters of equal size, i.e. a 

balanced clustering, with a minimum sum of all distances between points of the same subset 

consists of k disjoint segments of the line each containing n points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.resample.com/xlminer/help/kMClst/KMClust_ex.htm
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Hierarchical Clustering 

Purpose: 

- Understand theoretical aspects and the most important algorithms used for Hierarchical 

Clustering; 

- See examples of the domains where hierarchical clustering are used in practice; 

- Solve practical problems with hierarchical clustering. 

 

1. Theoretical aspects: Assignments 

1.1 What is Hierarchical clustering? 

Hierarchical clustering is a method of cluster analysis which follows to build a hierarchy of clusters. 

Hierarchical cluster analysis (or hierarchical clustering) is a general approach to cluster analysis, in 

which the object is to group together objects or records that are "close" to one another.  

A key component of the analysis is repeated calculation of distance measures between objects, and 

between clusters once objects begin to be grouped into clusters. The outcome is represented 

graphically as a dendrogram (the dendrogram is a graphical representation of the results of 

hierarchical cluster analysis). 

The initial data for the hierarchical cluster analysis of N objects is a set of N x (N – 1)/ 2 object-to-

object distances and a linkage function for computation of the cluster-to-cluster distances. A linkage 

function is an essential feature for hierarchical cluster analysis. Its value is a measure of the "distance" 

between two groups of objects (i.e. between two clusters).  

The two main categories of methods for hierarchical cluster analysis are divisive methods and 

agglomerative methods. In practice, the agglomerative methods are of wider use. On each step, the 

pair of clusters with smallest cluster-to-cluster distance is fused into a single cluster. 

1.2 Where Hierarchical Clustering is useful? 

First example where hierarchical clustering would be useful is a study to predict the cost impact of 

deregulation. To do the requisite analysis, economists would need to build a detailed cost model of the 

various utilities. It would save a considerable amount of time and effort if we could cluster similar 

types of utilities, build detailed cost models for just one typical utility in each cluster, then scale up 

from these models to estimate results for all utilities. 

Second example where hierarchical clustering would be useful is for automatic control of urban road 

traffic with both adaptive traffic lights and variable message signs. Using hierarchical cluster analysis 

we can specify the needed number of stationary road traffic sensors and their preferable locations 

within a given road network. 

Third example of using a hierarchical clustering is to take a file that contains nutritional information 

for a set of breakfast cereals. We have the following information: the cereal name, cereal 

manufacturer, type (hot or cold), number of calories per serving, grams of protein, grams of fat, 
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milligrams of sodium, grams of fiber, grams of carbohydrates, grams of sugars, milligrams of 

potassium, typical percentage of the FDA's RDA of vitamins, the weight of one serving, the number 

of cups in one serving. Hierarchical Clustering help to find which cereals are the best and worst in a 

particular category. 

1.3 Algorithms for hierarchical clustering: 

The most common algorithms for hierarchical clustering are: 

Agglomerative methods 

An agglomerative hierarchical clustering procedure produces a series of partitions of the data, Pn, Pn-1, 

… , P1. The first Pn consists of n single object 'clusters', the last P1, consists of single group containing 

all n cases. 

At each particular stage the method joins together the two clusters which are closest together (most 

similar). (At the first stage, of course, this amounts to joining together the two objects that are closest 

together, since at the initial stage each cluster has one object.) 

Differences between methods arise because of the different ways of defining distance (or similarity) 

between clusters. Several agglomerative techniques will now be described in detail. 

Single linkage clustering 

One of the simplest agglomerative hierarchical clustering method is single linkage, also known as the 

nearest neighbor technique. The defining feature of the method is that distance between groups is 

defined as the distance between the closest pair of objects, where only pairs consisting of one object 

from each group are considered. 

In the single linkage method, D(r,s) is computed as: 

D(r,s) = Min { d(i,j) : Where object i is in cluster r and object j is cluster s } 

Here the distance between every possible object pair (i,j) is computed, where object i is in cluster r 

and object j is in cluster s. The minimum value of these distances is said to be the distance between 

clusters r and s. In other words, the distance between two clusters is given by the value of the shortest 

link between the clusters. 

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are 

merged. 

This measure of inter-group distance is illustrated in the figure below: 
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Complete linkage clustering 

The complete linkage, also called farthest neighbor, clustering method is the opposite of single 

linkage. Distance between groups is now defined as the distance between the most distant pair of 

objects, one from each group. 

In the complete linkage method, D(r,s) is computed as 

D(r,s) = Max { d(i,j) : Where object i is in cluster r and object j is cluster s } 

Here the distance between every possible object pair (i,j) is computed, where object i is in cluster r 

and object j is in cluster s and the maximum value of these distances is said to be the distance between 

clusters r and s. In other words, the distance between two clusters is given by the value of the longest 

link between the clusters. 

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are 

merged. 

The measure is illustrated in the figure below: 

 

Average linkage clustering 

The distance between two clusters is defined as the average of distances between all pairs of objects, 

where each pair is made up of one object from each group.  

In the average linkage method, D(r,s) is computed as 

D(r,s) = Trs / ( Nr * Ns) 

Where Trs is the sum of all pairwise distances between cluster r and cluster s. Nr and Ns 

are the sizes of the clusters r and s respectively. 

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is the minimum, are 

merged. 

The figure below illustrates average linkage clustering: 
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Average group linkage 

With this method, groups once formed are represented by their mean values for each variable, that is, 

their mean vector, and inter-group distance is now defined in terms of distance between two such 

mean vectors. 

In the average group linkage method, the two clusters r and s are merged such that, after merger, the 

average pairwise distance within the newly formed cluster, is minimum. Suppose we label the new 

cluster formed by merging clusters r and s, as t. Then D(r,s) , the distance between clusters r and s is 

computed as 

D(r,s) = Average { d(i,j) : Where observations i and j are in cluster t, the cluster formed by merging 

clusters r and s } 

At each stage of hierarchical clustering, the clusters r and s , for which D(r,s) is minimum, are 

merged. In this case, those two clusters are merged such that the newly formed cluster, on average, 

will have minimum pairwise distances between the points in it. 

Cobweb 

Cobweb generates hierarchical clustering, where clusters are described probabilistically. Below is an 

example clustering of the weather data (weather.arff). The class attribute (play) is ignored (using the 

ignore attributes panel) in order to allow later classes to clusters evaluation. Doing this automatically 

through the "Classes to clusters" option does not make much sense for hierarchical clustering, because 

of the large number of clusters. Sometimes we need to evaluate particular clusters or levels in the 

clustering hierarchy. 

How Weka represents the Cobweb clusters? 

Below is a copy of the output window, showing the run time information and the structure of the 

clustering tree. 

Scheme: weka.clusterers.Cobweb -A 1.0 -C 0.234 

Relation: weather 

Instances: 14 

Attributes: 5 

outlook 

temperature 

humidity 

windy 

Ignored: 

play 

Test mode: evaluate on training data 

Clustering model (full training set) 

Number of merges: 2 

Number of splits: 1 

Number of clusters: 6 

node   0 [14] 

|  node 1 [8] 
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|  | leaf 2 [2] 

|  node 1 [8] 

|  | leaf 3 [3] 

|  node 1 [8] 

|  | leaf 4 [3] 

node 0 [14] 

|  leaf 5 [6] 

Evaluation on training set 

Number of merges: 2 

Number of splits: 1 

Number of clusters: 6 

node   0 [14] 

|  node 1 [8] 

|  | leaf 2 [2] 

|  node 1 [8] 

|  | leaf 3 [3] 

|  node 1 [8] 

|  | leaf 4 [3] 

node 0 [14] 

|  leaf 5 [6] 

Clustered Instances 

2  2 ( 14%) 

3  3 ( 21%) 

4  3 ( 21%) 

5  6 ( 43%) 

Comments on the output above: 

• node N or leaf N represents a subcluster, whose parent cluster is N. 

• The clustering tree structure is shown as a horizontal tree, where subclusters are aligned at the same 

column. For example, cluster 1 (referred to in node 1) has three subclusters 2 (leaf 2), 3 (leaf 3) and 4 

(leaf 4). 

• The root cluster is 0. Each line with node 0 defines a subcluster of the root. 

• The number in square brackets after node N represents the number of instances in the parent cluster 

N. 

• Clusters with [1] at the end of the line are instances. 

• For example, in the above structure cluster 1 has 8 instances and its subclusters 2, 3 and 4 have 2, 3 

and 3 instances correspondingly. 

• To view the clustering tree right click on the last line in the result list window and then select 

Visualize tree. 

To evaluate the Cobweb clustering using the classes to clusters approach we need to know the class 

values of the instances, belonging to the clusters. We can get this information from Weka in the 

following way: After Weka finishes (with the class attribute ignored), right click on the last line in the 

result list window. Then choose Visualize cluster assignments - you get the Weka cluster visualize 
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window. Here you can view the clusters, for example by putting 

Instance_number on X and Cluster on Y. Then click on Save and choose 

a file name (*.arff). Weka saves the cluster assignments in an ARFF file. 

Below is shown the file corresponding to the above Cobweb clustering. 

2. Examples 

First example: 

A hierarchical clustering of distances in kilometres between some Italian cities. The method used is 

single-linkage. 

Input distance matrix (L = 0 for all the clusters): 

 BA FI MI NA RM TO 

 

BA 0 662 877 255 412 996 

FI 662 0 295 468 268 400 

MI 877 295 0 754 564 138 

 NA 255 468 754 0 219 869 

RM 412 268 564 219 0 669 

TO 996 400 138 869 669 0 

 

 

The nearest pair of cities is MI and TO, at distance 138. These are merged into a single cluster called 

"MI/TO". The level of the new cluster is L(MI/TO) = 138 and the new sequence number is m = 1. 

Then we compute the distance from this new compound object to all other objects. In single link 

clustering the rule is that the distance from the compound object to another object is equal to the 

shortest distance from any member of the cluster to the outside object. So the distance from "MI/TO" 

to RM is chosen to be 564, which is the distance from MI to RM, and so on. 

 After merging MI with TO, we obtain the following matrix: 

 BA FI MI/TO NA RM 

BA 0 662 877 255 412 

FI 662 0 295 468 268 

MI/TO 877 295 0 754 564 

NA 255 468 754 0 219 

RM 412 268 564 219 0 

 

min d(i,j) = d(NA,RM) = 219 => merge NA and RM into a new cluster called NA/RM 

L(NA/RM) = 219 ,m = 2 
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 BA FI MI/TO NA/RM 

BA 0 662 877 255 

FI 662 0 295 268 

MI/TO 877 295 0 564 

NA/RM 255 268 564 0 

 

 

 

min d(i,j) = d(BA,NA/RM) = 255 => merge BA and NA/RM into a new cluster called 

BA/NA/RM 

L(BA/NA/RM) = 255 

m = 3 

 BA/NA/RM FI MI/TO 

BA/NA/RM 0 268 564 

FI 268 0 295 

MI/TO 564 295 0 

 

 

min d(i,j) = d(BA/NA/RM,FI) = 268 => merge BA/NA/RM and FI into a new cluster called 

BA/FI/NA/RM  

L(BA/FI/NA/RM) = 268 

m = 4 

 BA/FI/NA/RM MI/TO 

BA/FI/NA/RM 0 295 

MI/TO 295 0 

 

 

Finally, we merge the last two clusters at level 295. 

The process is summarized by the following hierarchical tree: 
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Second example: 

Coordination Example: 

Researchers performed a microarray experiment to generate a gene expression profile data set that 

indicates relative levels of expression for each of these genes (> 12000) in murine muscle samples. 

They measured expression levels at 27 time points to find genes that are biologically relevant to the 

muscle regeneration process. They already know that MyoD is a gene that is the most relevant to 

muscle regeneration. They run the hierarchical clustering with the data set, and identify a relevant 

cluster that peaks at day 3. In the parallel coordinates view, they search MyoD using search-by-name 

query, then make it a model pattern to perform a model-based query. They modify the model pattern 

to emphasize the peak at day 3 and then adjust the similarity thresholds to get the search result that 

mostly overlaps with the relevant day 3 cluster (Fig. 1 & Fig. 2). Finally, they confirm through other 

biological experiments that 2 genes (Cdh15 and Stam) in the overlapped result set are novel 

downstream targets of MyoD. 

 

Fig. 1 

Run a search-by-name query with MyoD to find 5 genes whose names contain MyoD, and the 5 genes 

are projected onto the current clustering result visualization shown by triangles under the color 

mosaic. Select a gene (myogenic differentiation 1) and make it a model pattern for next query. 

 

Fig. 2 
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Modify the model pattern to emphasize the peak at day 3 (notice the bold red line), and run a model-

based query to find a small set of candidate genes. The updated search result will be highlighted in the 

dendrogram view and other views. 

3. Assignments 

Problem 1: 

We have the following data files: 

cereal.txt (without 'vitamin' and 'rating' columns) : 77 x 9 

here: http://www.cs.umd.edu/hcil/hce/examples/cereal/cereal.txt 

cereal-updated.txt (with 'vitamin' and 'rating' columns) : 77 x 11 

here: http://www.cs.umd.edu/hcil/hce/examples/cereal/cereal-updated.txt 

The meaning of each column : 

1. 1st column : Name of cereal 

2. calories: calories per serving 

3. protein: grams of protein 

4. fat: grams of fat 

5. sodium: milligrams of sodium 

6. fiber: grams of dietary fiber 

7. carbo: grams of complex carbohydrates 

8. sugars: grams of sugars 

9. potass: milligrams of potassium 

10. vitamins: vitamins and minerals - 0, 25, or 100, indicating the typical percentage of FDA 

recommended 

11. shelf: display shelf (1, 2, or 3, counting from the floor) 

12. rating: a rating of the cereals (calculated by Consumer Reports) 

Requirements: 

Use the given data files to find the following using WEKA: 

1. Is a strong correlation between dietary fiber and potassium? 

2. Are groups of cereals from which we can choose according to our preferences? 

3. See other correlation between the data given in the files. 

Problem 2: 

We have the following data files: 

netscan-08-2003.txt (activity log of newsgroups where name contains "windowsxp" for August 

2003) : 91x10 

here:  http://www.cs.umd.edu/hcil/hce/examples/netscan/netscan-08-2003.txt 

netscan-1year.txt (activity log of newsgroups where name contains "windowsxp" 

for a year) : 104 x 10 

here: http://www.cs.umd.edu/hcil/hce/examples/netscan/netscan-1year.txt 
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The meaning of each column : 

1. 1st column : name of newsgroup 

2. Posts : # of messages that were contributed to the newsgroup 

3. Posters: : # of people who contributed at least on message to the newsgroup 

4. PPRatio: the ratio of posters to posts 

5. Returnees: # of people who contributed to the newsgroup in the current time 

period and also contributed a message in the previous time period 

6. Replies: # of people who contributed at least one message that was a reply to 

another message 

7. UnRMSGS: # of messages in the newsgroup that did not receive any reply in the 

newsgroup 

8. Avg.LineCT: average # of lines in each message 

9. XPosts:# of messages that were shared with at least one other newsgroup 

10. XPTgs:# of newsgroups that shared messages with the selected newsgroups 

Requirements: 

Use the given data files to find the following using WEKA: 

1. What are the most active groups in terms of the number of people involved cluster together? 

2. What are the most active communitie? 

The COBWEB Conceptual Clustering Algorithm 

The COBWEB algorithm was developed by machine learning researchers in the 1980s for clustering 

objects in a object-attribute data set. The COBWEB algorithm yields a clustering dendrogram called 

classification tree that characterizes each cluster with a probabilistic description. 

Operation of the COBWEB algorithm 

The COBWEB algorithm constructs a classification tree incrementally by inserting the objects into 

the classification tree one by one. When inserting an object into the classification tree, the COBWEB 

algorithm traverses the tree top-down starting from the root node. 

At each node, the COBWEB algorithm considers 4 possible operations and select the one that yields 

the highest CU function value: 

• insert. 

• create. 

• merge. 

• split. 

The COBWEB algorithm operates based on the so-called category utility function (CU) that measures 

clustering quality. 

If we partition a set of objects into m clusters, then the CU of this particular partition is 

 

 

Improvement in probability estimate because of 

instance cluster assignment 
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𝐶 ∪ (𝐶1, 𝐶2, … , 𝐶𝑘) =
∑ Pr [𝐶𝑙] ∑ ∑ (Pr[ 𝑎𝑖 = 𝑣𝑖𝑗 ∣∣ 𝐶𝑙 ]

2
− 𝑃𝑟[𝑎𝑖 = 𝑣𝑖𝑗]2)𝑗𝑖𝑙

𝑘
 

If each instance in its own cluster: 

Pr[ 𝑎𝑖 = 𝑣𝑖𝑗 ∣∣ 𝐶𝑙 ] = {
1  𝑣𝑖𝑗 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

Category utility function becomes: 

𝐶 ∪ (𝐶1, 𝐶2, … , 𝐶𝑘) =
𝑛 − ∑ ∑ Pr [𝑎𝑖 = 𝑣𝑖𝑗]2

𝑗𝑖

𝑘
 

Without k it would always be best for each instance to have its own cluster, overfitting! 

Insertion means that the new object is inserted into one of the existing child nodes. The COBWEB 

algorithm evaluates the respective CU function value of inserting the new object into each of the 

existing child nodes and selects the one with the highest score. 

The COBWEB algorithm also considers creating a new child node specifically for the new object. 

The COBWEB algorithm considers merging the two existing child nodes with the highest and second 

highest scores. 

 

The COBWEB algorithm considers splitting the existing child node with the highest 

score. 
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The COBWEB Algorithm 

Input:   The current node N in the concept hierarchy. 

An unclassified (attribute-value) instance I. 

Results:  A concept hierarchy that classifies the instance. 

Top-level call:  Cobweb(Top-node, I). 

Variables:  C, P, Q, and R are nodes in the hierarchy. U, V, W, and X are clustering (partition) 

scores. 

Cobweb(N, I) 

If N is a terminal node, 

Then Create-new-terminals(N, I) 

Incorporate(N,I). 

Else Incorporate(N, I). 

For each child C of node N, 

Compute the score for placing I in C. 

Let P be the node with the highest score W. 

Let Q be the node with the second highest score. 

Let X be the score for placing I in a new node R. 

Let Y be the score for merging P and Q into one node. 

Let Z be the score for splitting P into its children. 

If W is the best score, 

Then Cobweb(P, I) (place I in category P). 

Else if X is the best score, 

Then initialize R’s probabilities using I’s values 

(place I by itself in the new category R). 

Else if Y is the best score, 

Then let O be Merge(P, R, N).  
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Cobweb(O, I). 

Else if Z is the best score 

Then Split(P, N).  

Cobweb(N, I). 

Auxiliary COBWEB Operations 

Variables:  N, O, P, and R are nodes in the hierarchy. 

I is an unclassified instance. 

A is a nominal attribute. 

V is a value of an attribute. 

Incorporate(N, I) 

update the probability of category N. 

For each attribute A in instance I, 

For each value V of A, 

Update the probability of V given category N. 

Create-new-terminals(N, I) 

Create a new child M of node N. 

Initialize M’s probabilities to those for N. 

Create a new child O of node N. 

Initialize O’s probabilities using I’s value. 

Merge(P, R, N) 

Make O a new child of N. 

Set O’s probabilities to be P and R’s average. 

Remove P and R as children of node N. 

Add P and R as children of node O. 

Return O. 

Split(P, N) 

Remove the child P of node N. 

Promote the children of P to be children of N. 

An example of using COBWEB Algorithm: 

We have the following data: 

outlook Temp Humidity Windy Play 

sunny Hot High FALSE No 

Sunny Hot High TRUE No 

Overcast Hot High FALSE Yes 

Rainy Mild High FALSE Yes 

Rainy Cool Normal FALSE Yes 
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Rainy Cool Normal TRUE No 

Overcast Cool Normal TRUE Yes 

Sunny Mild High FALSE No 

Sunny Cool Normal FALSE Yes 

Rainy Mild Normal FALSE Yes 

Sunny Mild Normal TRUE Yes 

Overcast Mild High TRUE Yes 

Overcast Hot Normal FALSE Yes 

Rainy Mild High TRUE No 

 

Weather Data (without Play) 

Label instances: a,b,….,n 

Start by putting the first instance in its own cluster: 

 

Add another instance in its own cluster: 

 

Adding the Third Instance 

Evaluate the category utility of adding the instance to one of the two clusters versus adding it as its 

own cluster: 

 

Adding Instance f 

First instance not to get its own cluster: 

 

Look at the instances: 
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Rainy Cool Normal FALSE 

Rainy Cool Normal TRUE 

Quite similar! 

Add Instance g 

Look at the instances: 

E) Rainy Cool Normal FALSE 

F) Rainy Cool Normal TRUE 

G) Overcast Cool Normal TRUE 

 

Add Instance h 

Look at the instances: 

 

 

Final Hierarchy 
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What next? 

Dendogram - >clusters 
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Mining Frequent Itemsets – Apriori Algorithm 

Purpose: 

− key concepts in mining frequent itemsets 

− understand the Apriori algorithm 

− run Apriori in Weka GUI and in programatic way 

 

1. Theoretical aspects 

In data mining, association rule learning is a popular and well researched method for discovering 

interesting relations between variables in large databases. Piatetsky-Shapiro describes analyzing and 

presenting strong rules discovered in databases using different measures of interestingness. Based on 

the concept of strong rules, Agrawal introduced association rules for discovering regularities between 

products in large scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For 

example, the rule {onion,potatoes}=>{burger} found in the sales data of a supermarket would indicate 

that if a customer buys onions and potatoes together, he or she is likely to also buy burger. Such 

information can be used as the basis for decisions about marketing activities such as, e.g., promotional 

pricing or product placements. In addition to the above example from market basket analysis 

association rules are employed today in many application areas including Web usage mining, 

intrusion detection and bioinformatics. 

In computer science and data mining, Apriori is a classic algorithm for learning association rules. 

Apriori is designed to operate on databases containing transactions (for example, collections of items 

bought by customers, or details of a website frequentation). Other algorithms are designed for finding 

association rules in data having no transactions (Winepi and Minepi), or having no timestamps (DNA 

sequencing). 

 

Definition: 

Following the original definition by Agrawal the problem of association rule mining is defined as: 

Let I = {i1, i2, ..., in} be a set of n binary attributes called items. Let D = {t1, t2, ..., tn} be a set of 

transactions called the database. Each transaction in D has a unique transaction ID and contains a 

subset of the items in I. A rule is defined as an implication of the form 𝑿 → 𝒀 where X, Y ⊆ I 

and 𝑿 ∩ 𝒀 = ∅. The sets of items (for short itemsets) X and Y are called antecedent (left-hand-side or 

LHS) and consequent (right-hand-side or RHS) of the rule respectively. 

To illustrate the concepts, we use a small example from the supermarket domain. The set of items is I 

= {milk,bread,butter,beer} and a small database containing the items (1 codes presence and 0 

absence of an item in a transaction) is shown in the table below. An example rule for the supermarket 

could be {milk,bread}=>{butter} meaning that if milk and bread is bought, customers also buy butter.  
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Note: this example is extremely small. In practical applications, a rule needs a support of several 

hundred transactions before it can be considered statistically significant, and datasets often contain 

thousands or millions of transactions. 

Transaction ID Milk Bread Butter Beer 

1  1 1 0 0 

2  0 1 1 0 

3  0 0 0 1 

4  1 1 1 0 

5  0 1 0 0 

6  1 0 0 0 

7  0 1 1 1 

8  1 1 1 1 

9  0 1 0 1 

10  1 1 0 0 

11  1 0 0 0 

12  0 0 0 1 

13  1 1 1 0 

14  1 0 1 0 

15  1 1 1 1 

 

Useful Concepts 

To select interesting rules from the set of all possible rules, constraints on various measures of 

significance and interest can be used. The best-known constraints are minimum thresholds on support 

and 

confidence. 

Support 

The support supp(X) of an itemset X is defined as the proportion of transactions in the data set which 

contain the itemset. 

supp(X)= no. of transactions which contain the itemset X / total no. of transactions 

In the example database, the itemset {milk,bread,butter} has a support of 4 /15 = 0.26 since it occurs 

in 26% of all transactions. To be even more explicit we can point out that 4 is the number of 

transactions from the database which contain the itemset {milk,bread,butter} while 15 represents the 

total number of transactions. 

Confidence 

The confidence of a rule is defined: 

𝒄𝒐𝒏𝒇 (𝑿 → 𝒀) = 𝒔𝒖𝒑𝒑(𝑿 ∪ 𝒀)/𝒔𝒖𝒑𝒑(𝑿) 
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For the rule {milk,bread}=>{butter} we have the following confidence: 

supp({milk,bread,butter}) / supp({milk,bread}) = 0.26 / 0.4 = 0.65 

This means that for 65% of the transactions containing milk and bread the rule is correct. Confidence 

can be interpreted as an estimate of the probability P(Y | X), the probability of finding the RHS of the 

rule in transactions under the condition that these transactions also contain the LHS. 

Lift 

The lift of a rule is defined as: 

𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝(𝑌) ∗ 𝑠𝑢𝑝𝑝(𝑋)
 

The rule {milk,bread}=>{butter} has the following lift: 

supp({milk,bread,butter}) / supp({butter}) x supp({milk,bread})= 0.26/0.46 x 0.4= 1.4 

 

Conviction 

The conviction of a rule is defined as: 

𝑐𝑜𝑛𝑣(𝑋 → 𝑌) =
1 − 𝑠𝑢𝑝𝑝(𝑌)

1 − 𝑐𝑜𝑛𝑓(𝑋 → 𝑌)
 

The rule {milk,bread}=>{butter} has the following conviction: 

1 – supp({butter})/ 1- conf({milk,bread}=>{butter}) = 1-0.46/1-0.65 = 1.54 

 

The conviction of the rule X=>Y can be interpreted as the ratio of the expected frequency that X 

occurs without Y (that is to say, the frequency that the rule makes an incorrect prediction) if X 

and Y were independent divided by the observed frequency of incorrect predictions. 

In this example, the conviction value of 1.54 shows that the rule {milk,bread}=>{butter} would 

be incorrect 54% more often (1.54 times as often) if the association between X and Y was purely 

random chance. 

2. Apriori algorithm 

General Process 

Association rule generation is usually split up into two separate steps: 

1. First, minimum support is applied to find all frequent itemsets in a database. 

2. Second, these frequent itemsets and the minimum confidence constraint are used to form 

rules. 

While the second step is straight forward, the first step needs more attention. 

Finding all frequent itemsets in a database is difficult since it involves searching all possible itemsets 

(item combinations). The set of possible itemsets is the power set over I and has size 2
n
 − 1 (excluding 

the empty set which is not a valid itemset). Although the size of the powerset grows exponentially in 

the number of items n in I, efficient search is possible using the downward-closure property of 

support (also called anti-monotonicity) which guarantees that for a frequent itemset, all its subsets are 
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also frequent and thus for an infrequent itemset, all its supersets must also be infrequent. Exploiting 

this property, efficient algorithms (e.g., Apriori and Eclat) can find all frequent itemsets. 

 

Apriori Algorithm Pseudocode 

procedure Apriori (T, minSupport) { //T is the database and minSupport is the minimum support 

L1= {frequent items}; 

for (k= 2; Lk-1 !=∅; k++) { 

Ck= candidates generated from Lk-1-1 

//that iscartesian product Lk-1 x Lk-1 and eliminating any k-1 size itemset that is not  

//frequent 

for each transaction t in database do{ 

#increment the count of all candidates in Ck that are contained in t 

Lk = candidates in Ck with minSupport 

}//end for each 

}//end for 

return UkLk; 

} 

As is common in association rule mining, given a set of itemsets (for instance, sets of retail 

transactions, each listing individual items purchased), the algorithm attempts to find subsets which are 

common to at least a minimum number C of the itemsets. Apriori uses a "bottom up" approach, where 

frequent subsets are extended one item at a time (a step known as candidate generation), and groups 

of candidates are tested against the data. The algorithm terminates when no further successful 

extensions are found. 

Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It 

generates candidate item sets of length k from item sets of length k − 1. Then it prunes the candidates 

which have an infrequent sub pattern. According to the downward closure lemma, the candidate set 

contains all frequent k-length item sets. After that, it scans the transaction database to determine 

frequent item sets among the candidates. 

Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs, which 

have spawned other algorithms. Candidate generation generates large numbers of subsets (the 

algorithm attempts to load up the candidate set with as many as possible before each scan). Bottom-up 

subset exploration (essentially a breadth-first traversal of the subset lattice) finds any maximal subset 

S only after all 2
|S|

 − 1 of its proper subsets. 

 

3. Sample usage of Apriori algorithm 

A large supermarket tracks sales data by Stock-keeping unit (SKU) for each item, and thus is able to 

know what items are typically purchased together. Apriori is a moderately efficient way to build a list 
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of frequent purchased item pairs from this data. Let the database of transactions consist of the sets 

{1,2,3,4}, {1,2,3,4,5}, {2,3,4}, {2,3,5}, {1,2,4}, {1,3,4}, {2,3,4,5}, {1,3,4,5}, {3,4,5}, {1,2,3,5}. 

Each number corresponds to a product such as "butter" or "water". The first step of Apriori is to count 

up the frequencies, called the supports, of each member item separately: 

Item Support 

1 6 

2 7 

3 9 

4 8 

5 6 

 

We can define a minimum support level to qualify as "frequent," which depends on the context. For 

this case, let min support = 4. Therefore, all are frequent. The next step is to generate a list of all 2-

pairs of the frequent items. Had any of the above items not been frequent, they wouldn't have been 

included as a possible member of possible 2-item pairs. In this way, Apriori prunes the tree of all 

possible sets. In next step we again select only these items (now 2-pairs are items) which are frequent 

(the pairs written in bold text): 

Item Support 

{1,2} 4 

{1,3} 5 

{1,4} 5 

{1,5} 3 

{2,3} 6 

{2,4} 5 

{2,5} 4 

{3,4} 7 

{3,5} 6 

{4,5} 4 

We generate the list of all 3-triples of the frequent items (by connecting frequent pair with frequent 

single item). 

Item Support 

{1,3,4} 4 

{2,3,4} 4 

{2,3,5} 4 

{3,4,5} 4 
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The algorithm will end here because the pair {2, 3, 4, 5} generated at the next step does not have the 

desired support. 

We will now apply the same algorithm on the same set of data considering that the min support is 5. 

We get the following results: 

Step 1: 

Item Support 

1 6 

2 7 

3 9 

4 8 

5 6 

 

Step 2:  

Item Support 

{1,2} 4 

{1,3} 5 

{1,4} 5 

{1,5} 3 

{2,3} 6 

{2,4} 5 

{2,5} 4 

{3,4} 7 

{3,5} 6 

{4,5} 4 

 

The algorithm ends here because none of the 3-triples generated at Step 3 have de desired support. 

 

4. Sample usage of Apriori in Weka 

For our test we shall consider 15 students that have attended lectures of the Algorithms and Data 

Structures course. Each student has attended specific lectures. The ARFF file presented bellow 

contains information regarding each student’s attendance. 

 

@relation test_studenti 

 

@attribute Arbori_binari_de_cautare {TRUE, FALSE} 

@attribute Arbori_optimali {TRUE, FALSE} 
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@attribute Arbori_echilibrati_in_inaltime {TRUE, FALSE} 

@attribute Arbori_Splay {TRUE, FALSE} 

@attribute Arbori_rosu_negru {TRUE, FALSE} 

@attribute Arbori_2_3 {TRUE, FALSE} 

@attribute Arbori_B {TRUE, FALSE} 

@attribute Arbori_TRIE {TRUE, FALSE} 

@attribute Sortare_topologica {TRUE, FALSE} 

@attribute Algoritmul_Dijkstra {TRUE, FALSE} 

 

@data 

TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,FALSE 

TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE 

FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE 

FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE 

TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE 

TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE 

FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE 

TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE 

FALSE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE 

TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE 

FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE 

TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE 

FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE 

TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE 

TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE 

 

Using the Apriori Algorithm we want to find the association rules that have minSupport=50% and 

minimum confidence=50%. We will do this using WEKA GUI. 

After we launch the WEKA application and open the TestStudenti.arff file, we move to the Associate 

tab and we set up the following configuration: 
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After the algorithm is finished, we get the following results: 

 

 

If we look at the first rule we can see that the students who don’t attend the Sortare topologica lecture 

have a tendency to attend the Arbori TRIE lecture. The confidence of this rule is 100% so it is very 

believable. Using the same logic we can interpret all the other rules that the algorithm has revealed. 
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The same results presented above can be obtained by implementing the WEKA Apriori Algorithm in 

your own Java code. A simple Java program that takes the TestStudenti.arff file as input, configures 

the Apriori class and displays the results of the Apriori algorithm is presented below: 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

 

import weka.associations.Apriori; 

import weka.core.Instances; 

 

public class Main 

{ 

public static void main(String[] args) 

{ 

Instances data = null; 

try{ 

BufferedReader reader = new BufferedReader( new  

                             FileReader( "...\\TestStudenti.arff" ) ); 

data = new Instances(reader); 

reader.close(); 

data.setClassIndex(data.numAttributes() - 1); 

} 

catch( IOException e ) { 

e.printStackTrace(); 

} 

 

double deltaValue = 0.05; 

double lowerBoundMinSupportValue = 0.1; 

double minMetricValue = 0.5; 

int numRulesValue = 20; 

double upperBoundMinSupportValue = 1.0; 

String resultapriori; 

Apriori apriori = new Apriori(); 

apriori.setDelta(deltaValue); 

apriori.setLowerBoundMinSupport(lowerBoundMinSupportValue); 

apriori.setNumRules(numRulesValue); 

apriori.setUpperBoundMinSupport(upperBoundMinSupportValue); 
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apriori.setMinMetric(minMetricValue); 

 

try 

{ 

apriori.buildAssociations( data ); 

} 

catch ( Exception e ) { 

e.printStackTrace(); 

} 

resultapriori = apriori.toString(); 

System.out.println(resultapriori); 

} 

} 

5. Domains where Apriori is used 

Application of the Apriori algorithm for adverse drug reaction detection 

The objective is to use the Apriori association analysis algorithm for the detection of adverse drug 

reactions (ADR) in health care data. The Apriori algorithm is used to perform association analysis on 

the characteristics of patients, the drugs they are taking, their primary diagnosis, co-morbid 

conditions, and the ADRs or adverse events (AE) they experience. This analysis produces association 

rules that indicate what combinations of medications and patient characteristics lead to ADRs. 

 

Application of Apriori Algorithm in Oracle Bone Inscription Explication 

Oracle Bone Inscription (OBI) is one of the oldest writing in the world, but of all 6000 words found 

till now there are only about 1500 words that can be explicated explicitly. So explication for OBI is a 

key and open problem in this field. Exploring the correlation between the OBI words by Association 

Rules algorithm can aid in the research of explication for OBI. Firstly the OBI data extracted from the 

OBI corpus are preprocessed; with these processed data as input for Apriori algorithm we get the 

frequent itemset. And combined by the interestingness measurement the strong association rules 

between OBI words are produced. Experimental results on the OBI corpus demonstrate that this 

proposed method is feasible and effective in finding semantic correlation for OBI. 


